

Journal of Science Innovations and Nature of Earth

Journal homepage: www.jsiane.com

DIVERSITY OF NECTIFEROUS AND POLLENIFEROUS BEE FLORA FOR APIS MILLIFERA IN THE PARIKSHITGARH AREA OF MEERUT DISTRICT. UTTAR PRADESH, INDIA

Bhupesh Gupta¹, Navjot Singh², Arvind Kumar³, Sangeeta Sharma¹ And Surbhi Mittal²

¹Department of Zoology, School of Life Science and Technology, IIMT University, Meerut (U.P.)

²Department of Zoology, Kisan P.G. College Simbhaoli, Hapur (U.P).

³Department of entomology, Kisan P.G. College Simbhaoli, Hapur (U.P). Corresponding Author E-mail: chinukm155@gmail.com

https://doi.org/10.59436/9vceax06

Abstract

The current study aimed to examine the variety of plants that produce nectar and pollen, which attract bees, in the Parikshitgarh block of Meerut district. The flowering plants were surveyed to determine the presence and foraging behaviour of honeybees. Plants were classified as bee foraging species if they were visited by at least three honeybees within a 10-minute interval. The bee flora consists of several plant types that are visited by worker bees, including vegetable crops, fruit crops, plantations, fragrant plants, attractive plants, and medicinal plants. The flora that was identified was categorised into plants that produce pollen, plants that produce nectar, and plants that produce both pollen and nectar. The analysis revealed that honey flow times occurred from mid-December to February and mid-July to September, while significant dearth periods were found from mid-April to mid-June.

Keywords: Bee flora, beekeeping, *Apis millifera*, nectariferous and polleniferous, foraging activities.

Received 01.04.2024 Revised 20.05.2024 Accepted 21.06.2024

Introduction

India is a prominent country in terms of mega biodiversity, with over 750 species of bee flora. The honey bee is a eusocial insect known for its exceptional colony organisation. They have undergone coevolution with angiosperm plants as part of the evolutionary process, resulting in reciprocal benefits. Bees rely only on blooming plants to meet their dietary needs and, in return, facilitate the pollination of the plants. Plants that are pollinated correctly yield high-quality seeds for further propagation in nature. The bee seeks for plants in order to obtain its sustenance, which consists of honey and pollen. The reason for the bees' consistent attraction to flowers is their inclination towards nectars that contain high levels of sugar and pollens that offer more nutritional value. In addition to obtaining food for the bees, their visits also result in the pollination of many crops. Honey bees mostly consume carbohydrates obtained from nectar as their main source of nutrition. Nectar is a sweet liquid produced by specialised glands called nectaries within flowers. Nectar mostly comprises carbohydrates, which serve as a source of energy for bees. The nectar also contains amino acids, terpenes, alkaloids, flavonoids, vitamins, and oils. Several dicotyledonous plants employ this nectar to allure pollination insects. In addition, the bees extract protein and other essential elements from the pollen of the flowers. Pollen is a protein-rich substance that is generated in the anther, which is the male reproductive organ of a flower. Pollen is needed for honey bees to grow their brood. the hive bees, namely Apis mellifera.

The blooming plants encompass a variety of plant species, such as fruit-bearing plants, vegetable plants, oilseed plants, decorative plants, herbaceous plants, shrubs, bushes, as well as plants found in forests or along avenues. Areas abundant in nectar and pollen-producing plants over extended periods are optimal for beekeeping. Bees and bee colonies may maintain their health by consistently consuming nectar and pollen. Honeybees engage in mutualistic pollination with a diverse range of flowers, including cultivated and wild species as well as ornamental crops (Divekar et al., 2021; Divekar et al., 2022a). Bees and flowers have coevolved over millions of years. The interaction between the bee and the stationary plant is mutually beneficial, as the bee receives nourishment in the form of nectar or pollen, while the plant is able to spread its pollen (sperm cells) to other plants of the same species. The objective of this study was to identify the range of plants that produce nectar and pollen for bees in the Parikshitgarh block of Meerut district from April 2022 to March 2024, with the aim of building an apiary.

Materials and Methods

Study area- The chosen research location is Parikshitgarh, a historic site situated in the Meerut region of Uttar Pradesh, India. Parikshitgarh derives its name from King Parikshit, a prominent character in the epic Mahabharata. Parikshitgarh is located in the northern plains of India; known for their level and lush landscape that forms a portion of the extensive Indo-Gangetic plain. The latitude of Parikshitgarh is roughly 29.1713° N, while the longitude is around 77.9275° E.

Parikshitgarh is situated in close proximity to the Hastinapur Wildlife Sanctuary in Uttar Pradesh, India. The flora and fauna of Parikshitgarh exhibit the usual characteristics of the northern plains of India, which include agricultural fields, indigenous trees, common animals, birds, reptiles, and a diverse range of insects. The territory is enriched by the biological abundance of neighbouring places like as Hastinapur Wildlife Sanctuary, which enhances biodiversity and natural legacy. Parikshitgarh has a typical climate of northern India, which is characterised by different seasons including summer, monsoon, and winter. The region is primarily characterised by rural landscapes, consisting mostly of cultivated fields dedicated to agriculture. These fields primarily grow crops such as wheat, rice, sugarcane, and other agricultural products, as well as forests. Beekeeping may be pursued as an environmentally benign and profitable vocation, suitable for both full-time and parttime engagement.

Meerut district of Uttar Pradesh

Parikshitgarh

Assessment of bee flora: Flowering plants were observed directly on a weekly basis from April to March in both 2022 and 2024. Observations were made throughout the winter and fall seasons from 9:30 to 17:00, whereas observations during the summer were collected from 8:00 to 18:00. The identification of honeybee foraging plants was conducted by observing honeybee workers (Apis spp.) visiting their flowers for a duration of 10 minutes (Silveira, 2004). The assessment of nectar and pollen sources was conducted by *J. Sci. Innov. Nat. Earth*

observing the behaviour of honeybees on various flowers. Honeybees that extended their proboscis into the flowers were identified as nectar sources, while bees carrying pollen on their hind legs were identified as pollen source plants (Mbah and Amao, 2004; Bista and Shivakoti, 2000-2001).

Observation on nectariferous (N) and polleniferous (P) bee flora: The honey bee acts as a forager, visiting various plant species' flowers to collect nectar, pollen, or both. The classification of plants as nectariferous or polleniferous is determined on the specific activities carried out by honeybees on distinct blooms. If a honey bee lands on a flower and remains still while inserting its proboscis into the flower or collecting nectar from the outside nectaries, the flower is classified as nectariferous. On the other hand, if bees are highly active inside the flower, carrying pollen on their body or in their pollen basket (hind leg) from the flower, the flower is classified as polleniferous. Flowers that attract honey bees and support both nectar collection and pollen transfer are classified as nectariferous and polleniferous flora. Visitation intensity was visually recorded during the same time period. The plant was identified in the field with the assistance of local individuals and by collecting plant parts for scientific identification in a laboratory setting, using published documents as references.

Identification of bee flora: The recorded observation showed a total of 140 plant species, namely in the form of bee flora, which are both widespread and extensively dispersed in the research region. A total of 140 plant species were recorded as bee flora in the investigated region. Among these, 39 were identified as medical plants, including 19 vegetables and 14 fruit plant species. Additionally, 19 plant species were classified as attractive plants. Furthermore, 13 plant species were categorised as agricultural crops, including grain, pulses, fibre, and oil seed (Table: 1- 7).

Innov. Nat. Earth 2

Results and Discussion

The availability of bee plants is consistent throughout the year, with the major periods being December-March and July-August. The minor flow period of pollen occurs in April-May, while June is a period of scarcity. Nectar from medicinal plants remains accessible for a minimum of two months. Several plant species, including Murraya koenigii (L.), Justicia adhatoda L, and Bauhinia variegata (L.), are accessible for a three-month period. Ricinus communis L and Eucalyptus obliqua (L.), on the other hand, are available for four and five months, respectively. Thorough observations

were conducted on thirty species of trees and thirty-eight types of medicinal plants. Fifty-four groups of flora were examined, and some families such as Fabaceae, Leguminaceae, Cucerbitaceae, Solanaceae, and Malvaceae were identified as possible nectariferous medicinal bee foraging plants. Pollination is crucial for preserving the ecological equilibrium of ecosystems and serves as the foundation for crop cultivation, establishing a connection between agriculture and the life cycle. Therefore, pollination plays a significant role in the economic sector by enhancing both the quality and quantity of products. Honey bees play a crucial role in the agriculture ecology by pollinating a diverse range of crops. This study identifies 140 plant species from **54** different families that serve as a bee flora in the region. Out of these, the majority (38) are tiny medicinal plants, followed by 30 trees, 19 vegetables, 19 decorative plants, 14 fruit plant species, and 13 grain, pulses, fibre, and oilseed plants. Additionally, there are 7 species of climbing plants. Based on recorded observations, several fruits, vegetables, cereals, pulses, oilseed crops, fibre crops, decorative plants, and wild plant species were shown to be sources of nectar and pollen in both natural and crop ecosystems.

Conclusion

The production of many agricultural goods, such as medicinal and aromatic plants, relies on pollination by insects. Pollination by honey bees, indigenous bees, and flies is an annual event that has a major impact on economies across the world. A wide variety of fruits, vegetables, cereals, pulses, oilseed crops, fibre crops, decorative plants, and wild plant species supplied pollen and nectar to both the natural and agricultural ecosystems, according to the data collected. It follows that the Parikshitgarh region is a good place to start scientific beekeeping if you want to help farmers out. For future research in apiculture, the current results could provide light on how to best compile a database of the world's bee flora. The current research reveals a plethora of honey bee foraging medicinal plants. This information on bee flora is useful for colony management. Paying close attention to the maintenance and multiplication of existing flora is crucial to the conservation of these floras.

Table 1: Nectariferous / polleniferous bee flora of vegetable crops in Parikshit Garh

S. No	Common name	Botanical name	Family	Flowering period	Nectar	Pollen	Nectar + Pollen
1.	Brinjal	Solanum melongena	Solanaceae	Jan to Jul	-	P	-
2.	Tomato	Lycopercicon esculentum	Solanaceae	Jul-Sep	-	P	-
3.	Chilli	Capsicum sp.	Solanaceae	Jul-Feb	-	P	-
4.	Bhindi	Abelmoschus esculentus	Malvaceae	Aug – Nov	-	-	P+N
5.	Beans	Phaseolus vulgaris	Fabaceae	Dec-Feb	N	-	-
6.	Bottlegourd	Lagenaria siceraria	Cucurbitaceae	Oct – Feb.	-	-	P+N
7.	Cucumber	Cucumis sativus	Cucurbitaceae	Aug – Oct.	-	P	-
8.	Muskmelon	Cucumis melo	Cucurbitaceae	March – May.	-	P	-
9.	Pumpkin	Cucurbita pepo	Cucurbitaceae	Aug – Oct.	-	-	P+N
10.	Watermelon	Citrullus lanatus	Cucurbitaceae	July – Aug.	-	P	-
11.	Onion	Allium cepa	Liliaceae	Jun-Aug.	-	P	-

Diversity of Nectiferous and Polleniferous Bee Flora for *Apis Millifera* in the Parikshitgarh Area of Meerut District, Uttar Pradesh, India

12.	Drumstick	Moringa oleifera	Moringaceae	Nov – Feb.	-	-	P+N
13.	Ridgegourd	Luffa acutangula	Cucurbitaceae,	July –Oct.	-	-	P+N
15.	Clusterbean	Cyamopsis tetragonolobus	Leguminosae	Jun - Aug.	N	-	-
16.	Rajgiri/Amaranthus	Amaranthus gracilus	Amaranthaceae	Feb-Mar	-	P	-
17.	Bitter gourd	Momordica charantia	Cucurbitaceae	Aug-Oct	N	-	-
18.	Snake gourd	Trichosanthes anguina	Cucurbitaceae	Jan-Mar	-	-	P+N
19.	Little gourd	Coccinia grandis	Cucurbitaceae	Aug-Oct	-	-	P+N

Table 2: Nectariferous / polleniferous bee flora of Pulses ans Cereal crops in Parikshit Garh

S. No	Common name	Botanical name	Family	Flowering period	Necta r	Pollen	Nectar + Pollen
1.	Turkish gram balls	Vigna aconitifolia	Fabaceae	March - May.	N	-	-
2	Black eyed pea	Vigna unguiculata	Fabaceae	Jul – Aug.	N	-	-
3	Black gram	Vigna mungo	Fabaceae	Aug – Sep.	N	-	-
4	Chickpea	Cicer arietinum	Fabaceae	Dec – March.	N	-	-
6	Mung bean	Vigna radiata	Fabaceae	Aug – Sep.	N	-	-
7	Pea	Pisum sativum	Fabaceae	Aug- Sep.	-	-	N+P
8	Pigeon pea	Cajanus cajan	Fabaceae	July – Sep.	N	-	-
9	Wheat	Triticum aestivum	Poaceae	Jan – Apr	N		-
10	Maize	Zea mays	Poaceae	Aug - Sep, Feb - Mar	-	P	-
11	Rice	Oryza sativa	Poaceae	Sept- Oct	-	P	-
12	Jowar	Sorghum vulgare	Poaceae	Feb-Mar	-	P	-
13	Barely	Hordeum vulgare	Poaceae	Feb-Mar	N	-	-

Table 3: Nectariferous / polleniferous bee flora of fruit crops in Parikshit Garh.

S. No	Common name	Botanical name	Family	Flowering period	Nectar	Pollen	Nectar + Pollen
1.	Citrus	Citrus limon	Rutaceae	Oct – Jan, July – Sep.	-	-	P+N
2.	Mango	Mangifera india	Anacardiaceae	Dec- Jan	N	-	-
3.	Ber	Ziziphus jujuba	Rhamnaceae	July – Oct.	-	-	P+N
4.	Custard apple	Annona squamosa	Annonaceae	Aug – Oct.	-	-	P+N
5.	Pomegranate	Punica granatum	Punicaceae	March – June	-	-	P+N
6.	Sweet lime	Citrus aurantifolia	Rutaceae	Nov – March	-	-	P+N
7.	Caronda (Kavale)	Carissa carandas	Apocynaceae	Mar-Apr	-	-	P+N
8.	Water melon	Citrullus lanatus	Cucurbitaceae	Sep-Oct	-	P	-
9.	Mandrin	Citrus reticulata	Rutaceae	Mar-Apr	-	-	P+N
10	Banana	Musa sp.	Musaceae	Jan-Dec	-	-	P+N
11.	Gauva	Psidium guajava	Myrtaceae	Mar-Jun	-	-	P+N

12	Sapota	Manilkara achras	Sapotaceae	Mar-Jun	-	-	P+N
13	Amla	Phyllanthus emblica	Phyllanthaceae	April-may	-	-	P+N
14	Jamun	Syzygium cumini	Myrtaceae	Apr-May	-	-	P+N

Table 4: Nectariferous / polleniferous bee flora of Aromatic and Ornamental Plants in Parikshit Garh Block.

S. No	Common name	Botanical name	Family	Flowering period	Nectar	Pollen	Nectar + Pollen
1.	Kufiya	Cuphea hyssopifolia	Lithraceae	July-Aug	-	P	-
2.	Jasmine	Jasminum sp.	Oleaceae	July-Aug	N		-
3.	Rose	Rossa spp	Rosaceae	April-june			N+P
4.	Gladiolus	Gladiolus communis	Iridaceae	Nov-Dec	N	-	-
5.	Marigold	Tagitus sp	Asteraceae	Oct-Nov	-	-	N+P
6.	Chrysanthimum	Chrysantimum sinararifolium	Asteraceae	August-Oct	-	-	N+P
7.	Tuberose	Polianthes tuberosa	Asparagaceae	Sept- Oct	-	-	N+P
8.	Gaillardia	Gaillardia aristata	Asteraceae	Sept- Oct	-	-	N+P
9.	Jungle flame	Ixora Coccinea	Rubiaceae	Feb-Mar			P+N
1 0	Chamomile	Matricaria recutita	Asteraceae	All time			
1 1	Hibiscus	Hibiscus rosa-sinensis	Malvaceae	All time	-	-	P+N
1 2	Cosmos	Cosmos bipinnatus	Asteraceae	Mid summer	N		-
1 3	Vinca rosea	Catharanthus roseus	Apocynaceae	July- sep			N+P
1 4	Chadni	Tabern divaricata	Apocynaceae	June-august	N	-	-
1 5	Salvia	Salvia officinalis	Lamiaceae	summer	-	-	N+P
1 6	Pansy	Viola tricolor	Violaceae	Feb-april	-	-	N+P
1 7	Coleus	Coleus blumei	Lamiaceae	Late summer	-	-	N+P
1 8	Dog flower	Antirrhinum majus	Plantaginaceae	April	-	-	N+P
1 9	Zinnia	Zinnia elegans	Asteraceae	March-april			P+N

Table5: Nectariferous / polleniferous bee flora for small medicinal plants in Parikshit Garh.

S. No	Common name	Botanical name	Family	Flowering period	Nectar	Pollen	Nectar + Pollen
1	Wild mint	Ageratum conyzoides	Asteraceae	Dec-May	-	P	-
2	Atibala	Abutilon indicum	Malvaceae	Sep- april	-	P	-
3	Apmarga	Achyranthes aspera	Amaranthaceae	All time	-	-	P+N
4	Akarkara	Acmella paniculata	Asteraceae	Sep-jan	N	-	-
5	Vasha	Adhatoda vasica	Acanthaceae	Feb-april	-	-	P+N
6	vajardanti	Barleria prionitis	Acanthaceae	Nov-july	-	P	-
7	Purnava	Boerhavia diffusa	Nyctaginaceae	Jan-april	-	P	-
8	Patarchata	Bryophyllum pinnatum	Crassulaceae	July-sep	-	-	P+N
9	Madar	Calotropis gigantea	Apocynaceae	summer	-	P	-
10	Madar	Calotropis procera	Apocynaceae	summer	-	P	-

Diversity of Nectiferous and Polleniferous Bee Flora for *Apis Millifera* in the Parikshitgarh Area of Meerut District, Uttar Pradesh, India

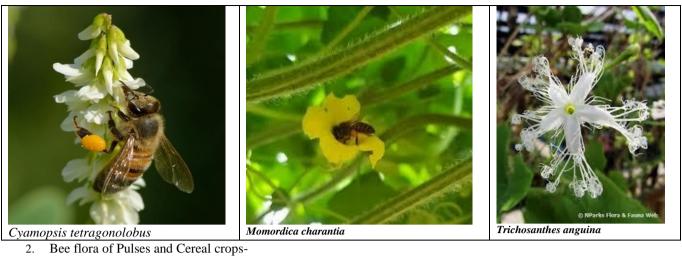
11	Casmard	Cassia occidentalis	Caesalpiniaceae	All time	-	-	P+N
12	Chakarmard	Cassia tora	Caesalpiniaceae	July-sep	-	-	P+N
13	Lal murga	Celosia cristata	Amaranthaceae	Spring and summer	N	-	-
14	Ratrani	Cestrum nocturnum	Solanaceae	July-nov	-	P	-
15	Ban tulsi	Croton bonplandianum	Euphorbiaceae	Sep-dec	N	-	-
16	Sal parni	Desmodium gangeticum	Fabaceae	Nov-dec	-	-	P+N
17	False amaranthus	Digeria muricata	Amaranthaceae	Aug-feb	-	-	P+N
18	Dronpusphi	Leucas cephalotes	Lamiaceae	July-oct			
19	Karipattha	Murraya koenigii	Rutaceae	March- may, july- august	-	P	-
20	Harsringar	Nyctanthes arbor tristis	Oleaceae	Aug-dec	-	P	-
21	Van tulsi	Ocimum basilicum	Lamiaceae	summer	-	P	-
22	Tulsi	Ocimum sanctum	Lamiaceae		-	-	P+N
23	Marhua	Origanum majorana	Lamiaceae	Jul-sep	N	-	-
24	Trikhand	Oxalis corriculata	Oxalidaceae	March-oct	-	-	P+N
25	Changari ghass	Oxalis latifolia	Oxalidaceae	Aug-apr	-	P	-
26	Chitrak	Plumbago zeylanica	Plumbaginaceae	Sep-nov	-	P	-
27	Champa	Plumeria chinensis	Apocynaceae.	summer	-	-	P+N
28	Arandi	Ricinus communis	Euphorbiaceae	All time	-	P	-
29	Bala	Sida acuta	Malvaceae	Sep-may	-	P	-
30	Bala(Khareti)	Sida cordifolia	Malvaceae	All time	-	-	P+N
31	Janglibhat	Solanum indicum	Solanaceae	Dec-march	-	-	P+N
32	Makoiya	Solanum nigrum	Solanaceae	Dec-march	N	-	-
33	Methi	Trigonella foenum	Fabaceae	Oct-nov	-	P	-
	Ashavgangha	Withania sominifera	Solanaceae	Oct-june	N	-	-
34	7 isha v gangha						
35 36 37	Tridax daisy Datura Touch me not	Tridax procumbens Datura sp. Mimosa pudica	Compositae Solanaceae Mimosaceae	Jan-Dec. Apr-Dec Jan-Dec	-	-	N+P P+N P+N

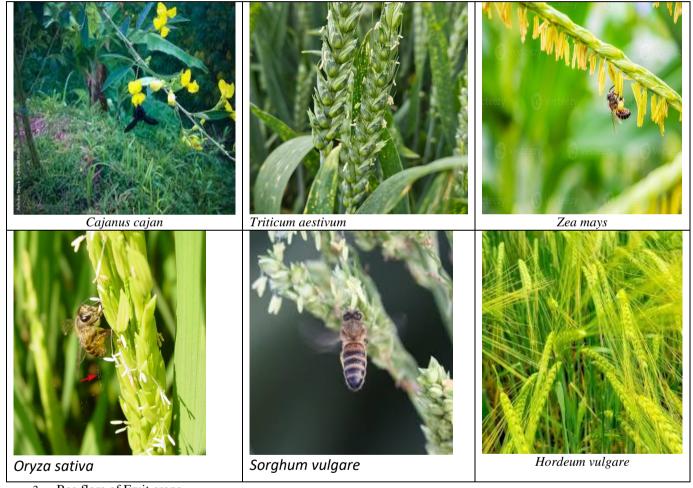
Table6: Nectariferous / polleniferous bee flora of Trees for bee in Parikshit Garh.

S. No	Common name	Botanical name	Family	Flowering period	Nectar	Pollen	Nectar + Pollen
1	Khair	Acacia catechu	Leguminosae	July-august	-	-	N+P

2	Siris	Albizia lebbeck	Leguminosae	Sep-Oct	-	-	N+P
3	Saptaparni	Alstonia scholaris	Apocynaceae	March- july	-	-	P+N
4	Kadamb	Anthocephalus cadamba	Meliaceae	monsoon	-	-	P+N
5	Neem	Azadirachta indica	Meliaceae	Mar- mar, aug-sep	-	-	P+N
6	Kachnar	Bauhinia variegata	Leguminosae	Sep-nov	-	P	
7	Red Silk Cotton Tree	Bombax ceiba	Malvaceae	March-april	-	-	P+N
8	Dhak, Palash	Butea frondosa	Leguminosae	Jan-feb	-	-	P+N
9	Amaltas	Cassia fistula	Leguminosae	May-july	-		P+N
10	Lasora	Cordia dichotoma	Boraginaceae	Feb-april	-	-	N+P
11	Barna	Crateva adansonii	Capparaceae	March-april, oct-nov	-	-	N+P
12	Shisham	Dalbergia sissoo	Leguminosae	March-april	-	P	
13	Amla	Emblica officinalis	Euphorbeaceae	March-may	-	-	N+P
14	Indian Coral Tree	Erythrina variegata	Fabaceae	Late winter	-	-	P+N
15	Banyan Tree	Ficus bengalensis	Moraceae	Jan-sep	-	-	P+N
16	Pipal	Ficus religiosa	Moraceae	Jan-sep	-		P+N
17	Goolar	Ficus glomerata	Moraceae	Jan-sep	-		P+N
18	Bakain	Melia azedarach	Leguminosae	Sep-nov	-	-	N+P
19	Maulsiri	Mimusops elengi	Sapotaceae	April	-	-	P+N
20	Khirni	Mimusops hexandra	Sapotaceae	Aug-dec	-	-	P+N
21	Sohanjana	Moringa oleifera	Moringaceae	July-aug, oct- nov	-	-	P+N
22	Pharrai	Oroxylum indicum	Bignoniaceae	July-aug	-	-	P+N
23	Kanak Champa	Pterospermum acerifolium	Sterculiaceae	July-april		P	-
24	Jungli Jalebi	Pithecellobium dulce	Leguminosae	Dec-feb	-	P	-
25	Karanj	Pongamia pinnata	Fabaceae	April-july	-	-	P+N
26	Pilu	Salvadora persica	Savadoraceae	Sep-oct	N		
27	Kusum	Schleichera oleosa	Spandeaceae	March-april		P	-
28	Sal	Shorea robusta	Diptocorpaceae	April-may	N	-	-
29	Bahera	Terminalia bellirica	Combretaceae	April-may	N	-	-

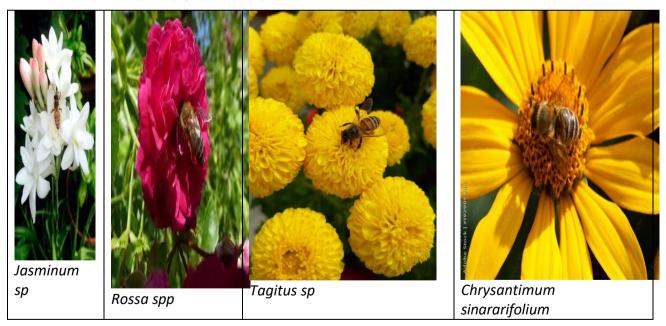

30	Arjun	Terminalia Arjuna	Combretaceae	May-june	-	-	P+N

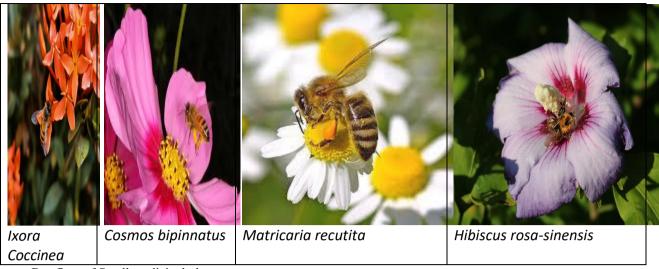

Table7: Nectariferous / polleniferous bee flora of creepers for bee in Parikshit Garh.


S. No	Common name	Botanical name	Family	Flowering period	Nectar	Pollen	Nectar + Pollen
1	Rangoon ceeper	Combretum indicum	Combretaceae	Feb-may, august-nov	-	-	P+N
2	Honeysuckle	Lonicera caprifolium	Caprifoliaceae	March-april	-	-	P+N
3	Aparajita	Clitoria ternatea	Leguminosae	March-april		P	-
4	Krishna bel	Passiflora incarnata	Passifloraceae	july	-	P	-
5	Dumbel	Tiolophora indica	Asclepidaceae	Oct-dec	-	P	-
6	Lehsunia bel	Manosoa alliacea	Bignoniaceae	All time	-	P	-
7	Antigonum	Antigonum leptopes	Polygonaceae	Apr- May	-	-	P+N

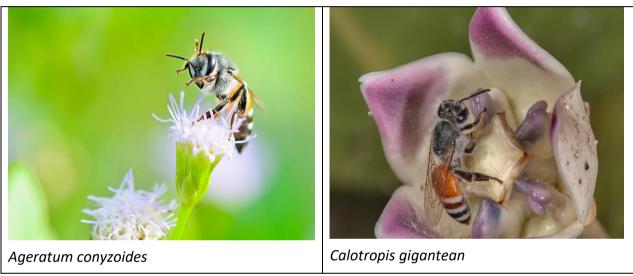
Site Observation Photography

1. Bee Flora of Vegetable Crops-





Bee flora of Fruit crops.



5. Bee flora of Small medicinal plants.

6. Bee flora of Trees.

References

Hoopingarner R, Waller G. Crop pollination. In: Graham J (ed.). The hive and the honey bee, Dadant& Sons Pub, Hamilton, III, 1992, 1043-1082.

Abrol DP. Bees and Bee-Keeping in India, Edn1, Kalyani Publishers, New Delhi, 1997, 110-130

Crane E, Walker P. Pollination directory for World Crops. International Bee Research Association, London, 1984.

Klein AM, Vaissière BE, Cane JH. Importance of pollinators in changing landscapes for world crops. Proceedings of the Royal Society B. 2007; 274(1608):303-313.

Kumar D, Bharti U. Tropic Niche Specialization of Butea monosperma from Chandigarh. Journal of Entomology and Zoology Studies. 2015; 3(4):83-85.

Free JB. Insect pollination of crops. Academic press, London, 1970, 544.

Akrathanakal P. Beekeeping in Asia. FAO, United Nations, 1987.

- Kumar R, Rajput GS, Mishra RC, Agrawal OP. A study on assessment of duration of dearth period for Honey bees in Haryana, India. Munis Entomology & Zoology. 2013; 8(1):434-437.
- Harugade S, Chaphalkar S. Floristic studies with reference to Honey bees of Baramati, Pune District. International Journal of Advancements in Research & Technology. 2013; 2(8):178-187.
- Kearns CA, Inouye DW. Techniques for Pollination Biologists, University Press of Colorado, Niwot, Colorado, USA, 1993.
- Atwal AS. The world of the Honey Bee, Edn 1, Kalyani Publishers, New Delhi, 2001, 91-95
- Gajbhiye KS, Mandal C. Agro-Ecological Zones, their Soil Resource and Cropping Systems. In: Status of Farm Mechanization in India. 2000; 1:1-32.
- Bista S, Shivakoti CP. Honey bee flora at Kabre, Dolakha District. Nepal, Agriculture Research Journal. 2000, 2001; 4-5:18-25.
- Delaplane KS, Dag A, Danka RG, Fretias BM, Lucas A, Garibaldi LA et al. Standard methods for pollination research with Apis mellifera. Journal of Apicultural Research. 2013; 52(4):1-28.
- Sivaram V. Honey bee flora and beekeeping in Karnataka State, India. Proceedings of the 37th International Apicultural Congress, Apimondia, Durban, South Africa, 2001.
- Partap U. Bee flora of the Hindu Kush-Himalayas: Inventory and management. ICMOD, Kathmandu, Nepal, 1997.
- Shreshtha K. Dictionary of Nepalese plant names. Mandala Book Point, Kathmandu, Nepal, 1998.
- Kaur G, Sihag RC. Bee flora of India: A review. Indian Bee Journal 1994; 56(3, 4):105-126.
- Bhalchandra W, Baviskar RK, Nikam TB. Diversity of nectariferous and polleniferous bee flora at Anjaneri

- and Dugarwadi hills of Western Ghats of Nasik district (M. S.) India. Journal of Entomology and Zoology Studies. 2014; 2(4):244-249.
- Harugade S, Gawate AB, Shinde B. Bee Floral Diversity of Medicinal Plants in Vidya Pratishthan Campus, Baramati, Pune, District (M.S.) India International Journal of Current Microbiology and Applied Sciences. 2016; 5(11):425-431.
- Singh AK, Jaiswal DK, Singh HK, Thakur RK. Diversity of Bees' Flora and Floral Calendar of Native Honeybees in Nagaland, India. Advances in Life Sciences. 2016; 5(6):2285-2292.
- Keller I, Fluri P, Imdorf A. Pollen nutrition and colony development in honey bees: part II. Bee World. 2005; 86(1):310.
- Brodschneider R, Crailsheim K. Nutrition and health in honey bees. Apidologie. 2010; 41:278-294.
- Zamarlicki CC. Evaluation of honeybee plants in Burma A case study. Proceedings of the FAO (UN) expert committee: 1984, 57-76.
- Sahli HF, Conner JK. Visitation, effectiveness and efficiency of 15 genera of visitors to wild radish, Raphanusraphanistrum (Brassicaceae). American Journal of Botany. 2007; 94:203-209.
- Thakur M. Bees as Pollinators Biodiversity and Conservation. International Research Journal of Agricultural Science and Soil Science. 2012; 2(1):1-7
- Divekar, P.A., Rani, V., Majumder, S. et al. Protease Inhibitors: An Induced Plant Defense Mechanism Against Herbivores. J Plant Growth Regul 42, 6057–6073 (2023).
- Behera LK, Mehta AA ... Bista S, Shivakoti CP. Honey bee flora at Kabre, Dolakha. District. Nepal, Agriculture Research Journal. 2000-2001