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Abstract 
A large group of bacteria called "PGPR" inhabit the root zone of plants and contribute to their growth in small but 

important ways. The synthesis of siderophores, phytohormone production, phosphate solubilization, biological nitrogen 

fixation, and 1-amino-cyclopropane-1-carboxylate (ACC) deaminase are all examples of such systems. The role of PGPR 

in plant growth-promoting processes is currently the subject of intense study. A growing number of farmers are beginning 
to see PGPR as a viable alternative to chemical additives, fertilizers, and pesticides. Instead, they play an important 

mediating role in soil behavior, interacting both antagonistically and synergistically with other soil microbes. They also 

hold promise as agents of sustainable agriculture, which could lead to a return to biological methods rather than chemical 

ones for sustaining soil fertility and plant survival in trying conditions. In this article, we take a look back at what we know 

about the ways in which PGPR works in farming, as well as the traits and processes that encourage plant development.  
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Introduction
In order to support a significantly expanding global 

population, agricultural production needs to rise by 50% to 

provide for approximately 9 billion individuals by the year 

2050 (Shah et al., 2021). However, the escalation of food 

production, along with the overuse of artificial fertilizers and 

degradation of cultivable land (Pastor et al., 2019), 

exacerbates the increase in greenhouse gas (GHG) emissions 
and their resulting effects on climate change. Change in 

climate has led to significant declines in the yields of 

essential cereal crops, with wheat experiencing a fall of 

around 5.5% and maize a decrease of 3.8% (Lipper et al., 

2014). Climate change is increasingly evident, resulting in a 

substantial increase in worldwide temperatures and the 

prevalence of other abiotic stressors that negatively impact 

harvest output. Soil is the top layer of the earth, containing 

water, oxygen, minerals and various life forms. These 

components perform fundamental functions together. The 

rhizosphere is a specialized, densely populated soil zone rich 

in beneficial microorganisms, consisting of a thin layer of 
soil around the roots. In 1978, Kloepper and Schroth first 

found rhizospheric bacteria in plant growth-promoting 

rhizobacteria (PGPR). Rhizospheric bacteria inhabit the root 

surface (rhizoplane) or penetrate root tissues (Gray and Smith 

2005). PGPR are classified as beneficial, harmful, or neutral 

based on their effects on plant growth and development. 

Plant growth is assisted by mechanisms including the direct 

synthesis of chemicals (phytohormones) that promote 

development and the enhancement of nutrient absorption 

from the soil or environment (Glick 1995). These effects of 

PGPR help plants by indirectly inducing the various 

mechanisms that reduce stress during infection, enhance the 

basal resistance of the plant or exert activity against 

pathogens (Glick 1995). Microbes are provided with a 

plentiful supply of energy and nutrients by the discharge of 

carbohydrates and amino acids into the rhizosphere by plants. 

The bacterial diversity in the vicinity of the roots is greater 

than that of the surrounding soil. The majority of 
rhizospheric organisms are situated within 50 µm of the root 

surface, and populations within just 10 µm can reach 

densities of up to 1.2 × 108 cells per cm³ or 109–1 microbial 

cell per gram of soil. Bacterial cells typically occupy only 7–

15% of the total root surface area, despite the high 

concentration of microorganisms in the rhizosphere (Foster et 

al. 1983; Pinton et al. 2001) 

Figure 1: Showing different roles of PGPR in plant growth 

enhancement 
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PGPR: As an Ammonia Producer  

One of the most important inorganic nitrogen sources for 
plants is ammonia. Ammonia triggers a cascade of 

morphological and physiological reactions in plants, 

including rapid alterations in gene expression, acidification 

of apoplasts, changes in cytosolic pH, and reorganization of 

the root system. Plant roots take up nitrogen in two forms: 

organic (urea, peptides, amino acids) and inorganic 

(ammonium, nitrates). Ammonium is taken up more readily 

than nitrates since it is a main nitrogen source (Miller et al. 

2007). Agricultural crops only absorb around 35–65% of the 

nitrogen applied to them through nitrogen fertilizers. 

Excessive nitrogenous compounds are released into water, 

air, and soil during agricultural operations, posing a threat to 
both human and environmental health. Xu et al. (2012) note 

that there is a continuous attempt to mitigate this negative 

impact on agricultural productivity. PGPR is a viable 

alternative to nitrogen fertilizers since it gives plants readily 

available sources of nitrogen. In order to make ammonia, the 

Cappucina and Sherman 1992 process is used. The following 

methodology was followed to culture bacterial strains: 10 ml 

of peptone water was added to test containers, and the 

mixture was incubated at 30 ± 0.10°C for two days. Next, 

half a centiliter of Nessler's reagent was added to each tube; 

this caused a change in color from yellow to brown, 
signifying the presence of ammonia. Bacillus sp., 

Pseudomonas sp., and Acinetobacter sp. were identified in 

the rhizosphere of mung bean plants using this method, 

confirming the participation of PGPR in ammonia synthesis 

to improve plant growth (Punam Kumari et al. 2018). 

PGPR: As a Phosphorus solubilizing agent 

Phosphorus is a mineral that plants can't grow without. But 

plants can't take it up from the ground. Fertilizers that contain 

phosphorus have been used for a long time to help plants that 

are lacking in this element. The rocks that contain phosphate 

are the source of these fertilizers. Consequently, there has 

been a surge in the mining of phosphorous rocks. Phosphorus 
deficit affects over 5.7 billion hectares of land globally, 

which significantly reduces agricultural productivity 

(Mouazen and Kuang 2016). In order to supply plants with 

soluble and accessible forms of immobilized phosphorus, 

researchers are working hard to create revolutionary 

biotechnological approaches. The following PGPR aid in the 

conversion of immobilized phosphorus into plant-available 

forms by increasing its solubility. Plants inoculated with 

PGPR have shown to increase their uptake of phosphate, 

according to certain research. The phosphate concentration in 

the shoots of Lupinus albescens is nearly three times higher 
when inoculated with Sphingomonas sp., and of maize with 

Pseudomonas sp., according to Vyas and Gulati (2009) and 

Granada et al. (2013), respectively. Bacillus megaterium, 

Enterobacter, and Arthrobacter chlorophenolicus inoculation 

increases wheat grain yield by a factor of two and improve 

straw phosphate levels (Kumar et al. 2014). 

PGPR: Antagonistic and biological agents 

Bacteria that operate as biocontrol agents reduce the impact 

of plant diseases, whereas bacteria that act as antagonists 

fight off harmful pathogens. Caused by the synthesis of 

hydrolytic enzymes including glucanases, lipases, and 

chitinases, which destroy harmful cells, these effects are 
obtained (Neeraja et al. 2010; Maksimov et al. 2011). 

Through PGPR, antagonistic antibiotics and bacteriocins are 

produced. Microbes and their metabolism can be slowed or 

stopped by tiny, varied chemical molecules called antibiotics 

(Duffy 2003). As biocontrol agents against root infections, 

the six main classes of antibiotics include pyoluteorin, cyclic 
lipopeptides, pyrrolnitrin, hydrogen cyanide, and 

ploroglucinols (Haas and Degago 2005). Bacillus cereus 

strain UW85 targets oomycete infections and produces 

kanosamine and zwittermicin A, two biocontrol agents 

against alfalfa damping-off (Silo-Suh et al. 1994; He et al. 

1994). In contrast to antibiotics, bacteriocins only kill 

bacteria that are very similar to the one that produced them 

(Riley and Wertz 2002). The wide suppression range of 

bacteriocins from Bacillus sp. makes them stand apart from 

other gram-negative bacteria, fungus, and yeast (Abriouel et 

al. 2011). One example of a protein found in gram-negative 

bacteria is colicin, which is produced by Escherichia coli. In 
order to protect plants from diseases, PGPR uses biocontrol 

agents to trigger a defense response called Induced Systemic 

Resistance (ISR) (Van Loon et al. 1998). Critical 

rhizobacteria for ISR activation include Pseudomonas and 

Bacillus sp.; ISR, like SAR, strengthens healthy plant tissues 

against infection (Van Wees et al. 1997; Van Loon et al. 

1998) (Kloepper et al. 2004; Van Wees et al. 2008). 

PGPR: As Phytohormone Producer 

The word "phytohormone" was first used by Starling to 

describe organic molecules that are made in tiny amounts in 

one part of a plant and then moved to another part of the 
plant to control some physiological process. Auxins, 

cytokinins, gibberellins, abscisic acid, and ethylene are some 

of the most important plant hormones that aid in growth and 

development. Because of the positive interactions between 

plants and microbes, phytohormones—which are also 

produced by PGPR—have received a lot of attention. Plant 

cells and the PGPR work together to produce 

phytohormones, which are crucial for plant development and 

growth. For example, according to Siddiqui (2006), PGPR 

controls the rhizosphere microbial populations, which impact 

root growth, seed germination, and water efficiency. 

Bacterial inoculants are agricultural preparations that include 
helpful microbes. They help plants grow by stimulating the 

rhizosphere to produce more phytohormones. Extensive 

research has been conducted on the production of 

phytohormones and growth regulators in Azospirillum 

species, including auxins, ethylene, gibberellins, cytokinins, 

abscisic acid, and nitric oxide and polyamines (Cassan et al. 

2014). Bacillus amyloliquefaciens produces salicylic acid, 

gibberellins, and auxins at high quantities in chemically 

specified media. In addition, Masciarelli et al. (2014) found 

that soybean nodule development is enhanced when 

Bradyrhizobium japonicum and Bacillus amyloliquefaciens 
are co-inoculated. Essential for plant vitality, development, 

and growth, Indole-3-acetic acid (IAA) plays a pivotal role in 

these processes. Microbacterium, Bacillus, Methylophages, 

Paenibacillus, and Agromyces are some of the bacterial 

species that produce indoleacetic acid (IAA), which greatly 

enhances root elongation in rice plants (Bal et al. 2013). 

Accelerated flowering, stem elongation, delayed aging, and 

seed dormancy can all be attributed to gibberellic acid (GA). 

Atzorn et al. (1988) first identified Rhizobium meliloti as the 

GA-producing bacterium. This led to the discovery that GA 

may be produced by Acetobacter diazotrophicus and 

Herbaspirillum seropedicae (Bastian et al. 1998). It has been 
shown that inoculating Pinus pinea with Bacillus 

licheniformis and Bacillus pumilus improves its growth 

(Probanza et al. 2002). Furthermore, Pseudomonas putida 
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controls stress physiology in salty conditions and aids in 

soybean development (Kang et al. 2014). Cytokinins have an 

essential role in several biological processes, including cell 
division, seed germination, and the delay of senescence 

(Monk 1994). Klebsiella, Escherichia, Proteus, Bacillus, 

Agrobacterium, Xanthomonas, and Pseudomonas are among 

the bacterial genera that produce cytokinins (Akiyoshi et al. 

1987; Garcia de Salamone et al. 2001; Karadeniz et al. 

2006). You can't have root gravitropism, fruit ripening, or 

seedling growth inhibition without ethylene. Pseudomonas 

solanacearum infection causes bananas to ripen early, even 

though only a small number of bacterial genera produce 

ethylene (Freebrain and Buddenhagen 1964). Both Boiero et 

al. (2007) and Cohen et al. (2008) found that Azospirillum 

brasilense and Bradyrhizobium japonicum produce abscisic 
acid (ABA), which aids in seed dormancy and leaf 

abscission. Research conducted by Mahaheshwari et al. 

(2015) found that out of all these hormones, auxin or IAA 

had the most beneficial effects on crop productivity and 

biocontrol. Table 1 lists a few microorganisms that produce 

phytohormones. 

Table 1: List of Phytohormones and their producing Bacteria. 

Phytohormones Bacteria References 

Auxin Methylophages,Bacillus, 

Agromyces, 

Microbacterium, 

Paenibacillus, 

Kocuriaturfanensis 

Bal et al. 

2013 

Goswami et 

al. 2014 

Gibberellic Acid Sphingomonas, Bacillus Khan et al. 

2014 

Cytokinin Pseudomonas and 

Agrobacterium 

Akiyoshi et 

al. 1987 

Ethylene Pseudomonas 

solanacearum, 

Pseudomonas syringae 

Freebairn and 

Buddenhagen 

1964 

Abscisic Acid Bradyrhizobium 

japonicum and 

Azospirillumbrasilense 

Boiero et al. 

2007 

Cohen et al. 

2008 

PGPR: Siderophore Production 

Iron is the fourth most vital and prevalent element for the 

growth, metabolism and survival of most cells on Earth. It is 

extensively present in soil but infrequently detected in its free 

form. In an aerobic atmosphere, soluble iron undergoes 

oxidation, transforming into oxyhydroxides and insoluble 

ferric oxides, rendering the free form of iron immobile (Page 
1993). Iron is essential for plants, microorganisms, and 

animals (Dudeja et al. 1997). It is a cellular component 

utilized as an electron transporter. Its deficit can induce a 

decline in DNA and RNA synthesis, growth inhibition, 

inhibition of sporulation, and alterations in cellular shape. It 

governs the manufacture of poisons, antibiotics, vitamins, 

siderophores, pigments, and other compounds. The ideal 

concentration of iron in the soil ranges from 24 to 42 ppm. A 

link exists between the iron content in soil and that in plants. 

Deficiency of iron in plants can be addressed through the 

application of iron chelates, the incorporation of organic 

matter into the soil, and the adjustment of soil pH; however, 
these methods are costly and inefficient for extensive use 

(Singh et al. 2024). Therefore, the utilization of microbes that 

produce siderophores is employed to enhance iron 

availability for plants (Chincholkar et al. 2000). There is 

ample evidence about iron absorption by plants via microbial 

siderophores.  Iron-regulated membrane proteins are present 
on the cell surfaces of bacterial strains that produce 

siderophores. These proteins facilitate the transportation of 

ferric iron complexes across the membrane, thereby releasing 

iron for cellular metabolism (Johri et al. 2003). Siderophores 

are iron-binding compounds with a low molecular weight 

that are produced by microorganisms to address iron 

deficiency (Kintu et al. 2001). Nevertheless, siderophores 

may be deleterious at elevated concentrations (Guerinot 

1994). They are produced by the majority of facultative 

anaerobic and aerobic microorganisms, with the exception of 

Lactobacilli (Loper and Buyer 1991). (Konetschny et al. 

1990) have classified siderophores into two primary 
categories based on their primary chelating groups: (i) 

Hydroxamates and (ii) Carboxylates (Catecholates). In a 

modified succinic acid medium, Pseudomonas fluorescens 

NCIM5096 and Pseudomonas putida NCIM2847 generate 

hydroxamate-type siderophores (Sayyed et al. 2005). In pot 

culture conditions, the inoculation of Pseudomonas 

fluorescens NCIM5096 improves the germination of seeds 

and the length of shoots and roots in wheat. According to 

Sayyed et al. (2007), the germination and growth of Withania 

somnifera and Chlorophytum borivillianum have been 

observed in both plate assays and pot assays under natural 
soil conditions. The siderophore-rich broth from Arthrobacter 

feacalis was produced under iron-deficient conditions in a 

succinic acid medium. Sayyed et al. (2007) also reported an 

increase in the germination rate of C. borivillianum tubers. 

Therefore, the biological application or inoculation of 

siderophore-producing microbes is a sustainable approach to 

improving crop productivity, increasing organic matter, and 

enhancing soil enzymes, in addition to the potential benefits 

of disease suppression and plant growth promotion (Sayyed 

et al. 2004). Some siderophore-producing bacteria are listed 

below in table 2. 

Table 2 List of Siderophore and their producing bacteria 
(Sayyed et al. 2013). 

Siderophore Bacteria 

Azotochelin Azotobacter vinelandii 

Agrobactin Agrobacterium tumefaciens 

Cepabactin Pseudomonas cepacian 

Enterobactin E.coli 

Pyochelin Pseudomonas aeruginosa 

Pyoverdin Pseudomonas sp. 

P. fluorescens 

P. putida 

Arthrobactin Arthrobacter sp. 

Francobactin Frankia sp. 

Schizokinen Bacillus megaterium 

Yersiniophore Yersinia enterocolitica 

PGPR: As Stress tolerant 

The global population is rapidly increasing, posing a 
challenge for agricultural food production to sustain this 

expanding demographic. The advancing community is 

directly influenced by numerous causes, including 

environmental degradation, constraints on arable land, and 

other abiotic and biotic pressures that impact global food 

production. Multiple strategies are required to meet food 

demand, including increased utilization of pesticides, 
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chemical fertilizers, and herbicides, as well as addressing 

salinity, heat, and drought-related land pressures. 

Nonetheless, these methods are unsustainable and 
detrimental to the environment. Approximately 7.6 million 

km² of territory is globally impacted by such adverse 

environmental variables (Christensen et al. 2007). 

Before evaluating the potential of rhizobacteria to promote 

plant growth, it is imperative to comprehend the mechanisms 

of microbial recruitment in the rhizosphere and the effects of 

root exudation (Drogue et al. 2012; Patel et al. 2017). 

Research has shown that Pseudomonas monteilli, 

Cronobacter dublinensis, and Bacillus sp. can improve 

nutrient assimilation and reduce abiotic stress in Ocimum 

basilicum L. (Rakshapal et al. 2013). Ion flux in plants is 

predominantly disrupted by salinity. Certain rhizobacteria, 
including Azospirillum sp. and Pseudomonas sp., have been 

demonstrated to enhance biomass and growth by modulating 

the availability of essential nutrients and oxidative stress 

enzymes in saline conditions (Noorieh et al. 2013). 

Mechanisms such as hydraulic conductance, enhanced 

photosynthetic processes, and osmotic accumulation, among 

others, may contribute to the salinity tolerance of PGPR 

(Dodd and Perez-Alfocea 2012). Pseudomonas sp. and 

Serratia sp. show beneficial characteristics, including 

phosphate solubilization, nitrogen fixation, and IAA 

production, particularly in the presence of salinity stress. 
Pseudomonas sp. is currently being evaluated for its potential 

to improve seed germination in Oryza sativa (Nakbanpote et 

al. (2014). Achromobacter piechaudii, which possesses ACC 

deaminase activity, enhanced the biomass of pepper and 

tomato plants in drought conditions, thereby enabling the 

plants to withstand water deficiency. Plants that are 

colonized by PGPR have been demonstrated to produce less 

ethylene, which mitigates the effects of water scarcity 

without substantially altering their relative water content 

(Myak et al. 2004). Inoculating maize plants with 

Mycobacterium phlei MbP18, Bacillus polymyxa BcP26, and 

Pseudomonas alcaligenes PsA15 under heavy metal stress led 
to improved nutrient uptake and growth. In contrast to 

fruitful loamy sand soils, roots that were growing in nutrient-

deficient calcareous soils exhibited an increased assimilation 

of nitrogen, phosphorus, and potassium (Egamberdiyeva 

2007). Research suggests that PGPR also improves plant 

tolerance to chilling injuries (Ait Barka et al. 2006) and high-

temperature stresses (Ali et al. 2009). Furthermore, 

Pseudomonas putida has been recognized as a beneficial 

agent for temperature tolerance (Ali et al. 2011). 

Consequently, PGPR can assist in the maintenance of the 

fertility of sustainable agricultural lands, the reduction of the 
dependence on chemical inputs, and the balance of soil 

nutrients. 

Conclusion 
An effective sustainable agriculture system enhances and 

preserves human health, safeguards the environment, 

generates sufficient food for a growing global population, 

and provides spiritual and economic advantages to both 

producers and consumers. Biotic and abiotic pressures 

present in the environment are significant limits to global 

agricultural productivity. PGPR present a compelling 

solution to this issue as they provide resistance to various 

stresses and possess multifunctional capabilities to augment 
crop yield, mitigate environmental pollution, facilitate the 

development of novel inoculants, and promote eco-friendly 

sustainable agricultural growth via methods such as nitrogen 

fixation, phosphate solubilization, ammonia production, 

siderophore synthesis, and hormone production, among 

others. The diversity, method of action, host specificity, 

colonization ability, applications, and formulations of PGPR 

are directly pertinent to their utilization in horticulture, 

agriculture, and agroforestry for sustainable plant 

development and growth. Despite considerable progress in 

comprehending the factors that facilitate PGPR root 
colonization, metabolic status, mechanisms of action, 

dispersal, and interactions with host plants, results remain 

inconsistent due to challenges such as screening programs, 

application, and formulation. Consequently, PGPR has not 

yet realized its potential and promise as commercial 

inoculants. Ongoing efforts are necessary to improve plant 

growth, increase competitiveness, and enhance capabilities 

through genetic engineering or selection in an economically 

viable and efficient manner in the development of PGPR 

formulations. This should aim for sustainable success across 

diverse soil conditions, host cultivars, and climates by 

acquiring knowledge of the genes and characters required in 
the interaction between PGPR and roots. In addition to 

understanding PGPR, its application, and efficiency, there 

must be heightened awareness regarding its use and adoption, 

a robust relationship between researchers and entrepreneurs, 

and the necessity for new strategies to minimize chemical 

treatments for sustainable agriculture, thereby leveraging all 

beneficial factors and mechanisms of action of PGPR in 

agricultural practices. 
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