HERSCHEL-BULKLEY FLUID: STUDY OF RHEOLOGICAL PROPERTIES FOR BLOOD FLOW OF PULSES IN ω-PROTOTYPE IN ARTERIES’ STENOSIS
DOI:
https://doi.org/10.59436/d0nkz785Keywords:
Non-Newtoian fluid, Herschel-Bulkley fluid model, Rheological PropertiesAbstract
In this article, we examined the blood flow that was being pressed as part of the war. The Herschel-Bulkley fluid model is applied for representing non-Newtonian blood features in the small arteries. The current governing equation is guided by the fact that the flow has shape and is linear. The standard method of cleanup is used to get first-order expressions for different flow variables. The temporal distributions of axial velocity and wall shear stress, flow meter flow rate and flow resistance are shown in bold. Also discussed are the parameters involved in the contact of various fields of impact plug-flow. A comparison of blood flow and stimulus signals in the same area also causes the blood vessels to recover. All content is an article licensed underneath of a Creative Commons Attribution (CC BY) licence, if not in writing.
References
Dwivedi, P., Pal, T.S. and Rakesh, L. (1982). Micropolar fluid model for blood flow through a small tapered tube, Indian J. Technology 20: 295–299.
Chaturani, P. and Pralhad, R.N. (1985). Blood flow in tapered tubes with biorheological applications, Biorheology 22(4): 303–314. DOI: https://doi.org/10.3233/BIR-1985-22403
Tu, Deville et al. (1992). Finite element simulation of pulsatile flow through arterial stenosis, J. Biomechanics 25(10): 1141–1152. DOI: https://doi.org/10.1016/0021-9290(92)90070-H
Lee, J. and Fung, Y. (1970). Flow in locally constricted tube at low Reynolds number, J. Appl. Mech., 379–16. DOI: https://doi.org/10.1115/1.3408496
Azuma, T. and Fukushima, T. (1976). Flow patterns in stenotic blood vessel models, Biorheology. 13: 337–355. DOI: https://doi.org/10.3233/BIR-1976-13602
Morgan, E. and Young, D.F. (1974). An integral method for the analysis of flow in Arterial stenosis, Bull Math. Biol. 36: 39–53. DOI: https://doi.org/10.1016/S0092-8240(74)80005-4
Cheng, L.C., Robertson, J.M. and Clark, M.E. (1973). Numerical calculations of plane oscillatory non-uniform flow—II. Parametric study of pressure gradient and frequency with square wall obstacles, J. Biomechanics 6: 521–538. DOI: https://doi.org/10.1016/0021-9290(73)90010-9
Padmanabhan, N. (1980). Mathematical model of arterial stenosis, Med. Biol. Engng Comput. 18: 281–286. DOI: https://doi.org/10.1007/BF02443380
Kawaguti, M. and Hamano, A. (1983). Numerical study on post-stenotic dilatation, Biorheology 20: 507–518. DOI: https://doi.org/10.3233/BIR-1983-20508
O’Brien, V. and Ehrlich, L.W. (1985). Simple pulsatile flow in an artery with a constriction, J. Biomechanics, 18: 117–127. DOI: https://doi.org/10.1016/0021-9290(85)90004-1
Nadeem, S., Akbar, N.S., Hendi, A.A. and Hayat, T. (2011). Power law fluid model for blood flow through a tapered artery with a stenosis, Appl. Math. Comput. 217: 7108–7116. DOI: https://doi.org/10.1016/j.amc.2011.01.026
Chaturani, P. and Ponnalagar Samy, R. (1986). Pulsatile flow of a Casson fluid through stenosed arteries with application to blood flow, Biorheology, 23: 499–511. DOI: https://doi.org/10.3233/BIR-1986-23506
Mirza, A., Abdul Hameed, M. and Shafie, S. (2017). Magnetohydrodynamic approach of non-Newtonian blood flow with magnetic particles in stenosed artery, Applied Mathematics and Mechanics (English Edition), 38: 379–392. DOI: https://doi.org/10.1007/s10483-017-2172-7
Shukla, J.B., Parihar, R.S. and Rao, B.R.P. (1980). Effects of stenosis on non-Newtonian flow through an artery with mild stenosis, Bull. Math. Biol., 42: 283–294. DOI: https://doi.org/10.1016/S0092-8240(80)80051-6
Zaman, A. and Ali, N. (2016). Effects of peripheral layer thickness on pulsatile flow of Herschel–Bulkley fluid through a stenotic artery, Can. J. Phys., 94(9): 920-928. DOI: https://doi.org/10.1139/cjp-2014-0584
Zaman, A., Ali, N., Anwar Beg, O. and Sajid, M. (2016). Heat and mass transfer to blood flow through a tapered overlapping stenosed artery, International Journal of Heat and Mass Transfer, 95: 1084–1095. DOI: https://doi.org/10.1016/j.ijheatmasstransfer.2015.12.073
Zaman, A., Ali, N., Sajid, M. and Hayat, T. (2015). Effects of unsteadiness and non-Newtonian rheology on blood flow through a tapered time-variant stenotic artery, AIP Advances, 5: 037129. DOI: https://doi.org/10.1063/1.4916043
Ali, N., Zaman, A. and Sajid, M. (2014). Unsteady blood flow through a tapered stenotic artery using Sisko model, Computers & Fluids, 101: 42–49. DOI: https://doi.org/10.1016/j.compfluid.2014.05.030
Ali, N., Zaman, A., Sajid, M., Nieto, J.J. and Torres, A. (2015). Unsteady non-Newtonian blood flow through a tapered overlapping stenosed catheterized vessel, Mathematical Biosciences 269: 94–103. DOI: https://doi.org/10.1016/j.mbs.2015.08.018
Zaman, A., Ali, N., Anwar Beg, O. and Sajid, M. (2016). Unsteady two-layered blood flow through aw-shaped stenosed artery using the generalized Oldroyd-B fluid model, ANZIAM Journal, 58: 96–118. DOI: https://doi.org/10.1017/S1446181116000134
Zaman, A., Ali, N. and Sajid, M. (2016). Slip effects on unsteady non-Newtonian blood flow through an inclined catheterized overlapping stenotic artery, AIP Advances, 6: 015118. DOI: https://doi.org/10.1063/1.4941358
Shah, S.R. (2013). An innovative study for non-Newtonian behaviour of blood flow in stenosed artery using Herschel-Bulkley fluid model, International Journal of Bio-Science and Bio-Technology, 5: 233–240. DOI: https://doi.org/10.14257/ijbsbt.2013.5.5.24
Nikolov, S., Stoytchev, S., Torre, A. and Nieto, J.J. (2003). Biomathematical modeling and analysis of blood flow in an intracranial aneurysm, Neurological Research, 25: 497–504. DOI: https://doi.org/10.1179/016164103101201724
Sankar, S. and Lee, U. (2009). Mathematical modeling of pulsatile flow of non-Newtonian fluid in stenosed arteries, Commun Nonlinear Sci Numer Simul, 14: 2971–2981. DOI: https://doi.org/10.1016/j.cnsns.2008.10.015
Siddiqui, S.U., Verma, N.K., Mishra, S. and Gupta, R.S. (2009). Mathematical modelling of pulsatile flow of Casson’s fluid in arterial stenosis, App Math Comp., 210: 1–10. DOI: https://doi.org/10.1016/j.amc.2007.05.070
Chakravarthy, S. and Mandal, P.K. (1994). Mathematical modelling of blood flow through an overlapping stenosis, Math. Comput. Model., 19: 59–73. DOI: https://doi.org/10.1016/0895-7177(94)90116-3
Srivastava, V.P. and Rastigi, R. (2010). Blood flow through stenosed catheterized artery: Effects of hematocrit and stenosis shape, Comput. Math. Applc., 59: 1377–1785. DOI: https://doi.org/10.1016/j.camwa.2009.12.007
Maruthi, K.P., Vijaya, B. and Umadevi, C. (2014). A mathematical model of Herschel-Bulkley fluid through an overlapping stenosis, IOSR Journal of Mathematics (IOSR-JM), 10(2): 41–46. DOI: https://doi.org/10.9790/5728-10224146
Srikanth, J.V., Ramana Reddy, S. Jain, and Kale, A. (2015). Unsteady polar fluid model of blood flow through tapered-shape stenosed artery: Effects of catheter and velocity slip, Ain Shams Engineering Journal, 6: 1093–1104. DOI: https://doi.org/10.1016/j.asej.2015.01.003
Sankar, D.S. and Hemalatha, K. (2006). Pulsatile flow of Herschel–Bulkley fluid through stenosed Arteries–A mathematical model, International Journal of Non-Linear Mechanics, 41: 979–990. DOI: https://doi.org/10.1016/j.ijnonlinmec.2006.02.007
Downloads
Published
Issue
Section
License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.