Effect of Salt Treatments on Amaranthus viridis Plant Germination and Growth
DOI:
https://doi.org/10.59436/jsiane.com/archives3/4/111Keywords:
Salinity, Germination, NaClAbstract
During the germination and early seedling phases, the effects of three salinity levels—0, 100, 150, and 300 mM NaCl on Amaranthus viridis were studied. The effects of salt stress on different germination and physiological features were revealed by this laboratory pot experiment, which was planned as a fully randomised study with three replications for each salinity level. Interestingly, the greatest detrimental impacts were noticeable when seeds were exposed to 300 mM NaCl, highlighting the significant effects of excessive salinity on Amaranthus viridis germination and early growth. These results advance our knowledge of the ways salinity affects the critical early stages of Amaranthus viridis development.
References
Siswanti, D. U., & Khairunnisa, N. A. (2021). The effect of biofertilizer and salinity stress on Amaranthus tricolor L. growth and total leaf chlorophyll content. In BIO Web of Conferences (Vol. 33, p. 02004). EDP Sciences. DOI: https://doi.org/10.1051/bioconf/20213302004
Andini, R., Yoshida, S., Yoshida, Y., & Ohsawa, R. (2013). Amaranthus genetic resources in Indonesia: morphological and protein content assessment in comparison with worldwide amaranths. Genetic resources and crop evolution, 60, 2115-2128. DOI: https://doi.org/10.1007/s10722-013-9979-y
Das, S. (2016). Amaranthus: a promising crop of future. Springer. DOI: https://doi.org/10.1007/978-981-10-1469-7
Riggins, C. W., Barba de la Rosa, A. P., Blair, M. W., & Espitia-Rangel, E. (2021). Amaranthus: naturally stress-resistant resources for improved agriculture and human health. Frontiers in Plant Science, 12, 726875. [CrossRef] DOI: https://doi.org/10.3389/fpls.2021.726875
Mlakar, S. G., Turinek, M., Jakop, M., Bavec, M., & Bavec, F. (2010). Grain amaranth as an alternative and perspective crop in temperate climate. Journal for Geography, 5(1), 135-145. DOI: https://doi.org/10.18690/rg.5.1.4011
Assad, R., Reshi, Z. A., Jan, S., & Rashid, I. (2017). Biology of amaranths. The botanical review, 83, 382-436.
Volkov, V., & Beilby, M. J. (2017). Salinity tolerance in plants: Mechanisms and regulation of ion transport. Frontiers in Plant Science, 8, 1795. DOI: https://doi.org/10.3389/fpls.2017.01795
Imtiyaz, S., Agnihotri, R. K., Ahmad, S., & Sharma, R. (2014). Effect of cobalt and lead induced heavy metal stress on some physiological parameters in Glycine max. International Journal of Agriculture and Crop Sciences, 7(1), 26-34.
Heenan, D. P., Lewin, L. G., & McCaffery, D. W. (1988). Salinity tolerance in rice varieties at different growth stages. Australian Journal of Experimental Agriculture, 28(3), 343-349. DOI: https://doi.org/10.1071/EA9880343
Taghipour, F. and Saheli, M. (2008). The study of salt tolerance of eranian barley (Hordeum vulgare L.) genotype in seedling growth stage. Biological Diversity and Conservation, 172: 53-58.
Mwando, E., Han, Y., Angessa, T. T., Zhou, G., Hill, C. B., Zhang, X. Q., & Li, C. (2020). Genome-wide association study of salinity tolerance during germination in barley (Hordeum vulgare L.). Frontiers in plant science, 11, 118. DOI: https://doi.org/10.3389/fpls.2020.00118
Han, C., & Yang, P. (2015). Studies on the molecular mechanisms of seed germination. Proteomics, 15(10), 1671-1679. DOI: https://doi.org/10.1002/pmic.201400375
Shanker, A., & Venkateswarlu, B. (2021). Abiotic Stress in Plants. Books on Demand: Norderstedt, Germany.
Chapman, V. J. (1960). Salt marshes and salt deserts of the world. London and New York, 213-214.
Wang, L., Huang, Z., Baskin, C. C., Baskin, J. M., & Dong, M. (2008). Germination of dimorphic seeds of the desert annual halophyte Suaeda aralocaspica (Chenopodiaceae), a C4 plant without Kranz anatomy. Annals of Botany, 102(5), 757-769. DOI: https://doi.org/10.1093/aob/mcn158
Redondo, S., Rubio-Casal, A. E., Castillo, J. M., Luque, C. J., Alvarez, A. A., Luque, T., & Figueroa, M. E. (2004). Influences of salinity and light on germination of three Sarcocornia taxa with contrasted habitats. Aquatic botany, 78(3), 255-264. DOI: https://doi.org/10.1016/j.aquabot.2003.11.002
Adolf, V. I., Jacobsen, S. E., & Shabala, S. (2013). Salt tolerance mechanisms in quinoa (Chenopodium quinoa Willd.). Environmental and Experimental Botany, 92, 43-54. DOI: https://doi.org/10.1016/j.envexpbot.2012.07.004
Hao, J. H., Lv, S. S., Bhattacharya, S., & Fu, J. G. (2017). Germination response of four alien congeneric Amaranthus species to environmental factors. PLoS One, 12(1), e0170297. DOI: https://doi.org/10.1371/journal.pone.0170297
Khan, A. M., Mobli, A., Werth, J. A., & Chauhan, B. S. (2022). Germination and seed persistence of Amaranthus retroflexus and Amaranthus viridis: Two emerging weeds in Australian cotton and other summer crops. PLoS One, 17(2), e0263798. DOI: https://doi.org/10.1371/journal.pone.0263798
Estrada, Y., Fernández-Ojeda, A., Morales, B., Egea-Fernández, J. M., Flores, F. B., Bolarín, M. C., & Egea, I. (2021). Unraveling the strategies used by the underexploited amaranth species to confront salt stress: Similarities and differences with quinoa species. Frontiers in Plant Science, 12, 604481. DOI: https://doi.org/10.3389/fpls.2021.604481
Assad, R., Reshi, Z. A., Jan, S., & Rashid, I. (2017). Biology of amaranths. The botanical review, 83, 382-436. DOI: https://doi.org/10.1007/s12229-017-9194-1
Downloads
Published
Issue
Section
License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.