Coordination Polymers: Bridging Inorganic Chemistry and Materials Science
DOI:
https://doi.org/10.59436/jsiane.347.2583-2093Keywords:
Coordination polymers; Metal-organic frameworks; Supramolecular chemistry; Heterogeneous catalysis; Gas sorption; Crystal engineeringAbstract
Coordination polymers exist at the intersection of inorganic chemistry and materials science. The metal centers and organic ligands are organized into one-, two-, or three-dimensional arrays. Control over their porosity, stability, and reactivity can be achieved through careful modifications of the metal nodes and organic linkers. Recent advancements, including mechanochemical, microwave-assisted, and template-driven methods, have further enhanced the effectiveness of these materials. Their potential applications encompass catalysis, energy storage, sensing, and environmental remediation technologies. However, some challenges remain to be addressed to facilitate their large-scale use in industrial and biomedical sectors. This review not only highlights recent advances in coordination polymers but also presents perspectives for their applications in various fields, contributing to the goal of making these materials green and sustainable.
References
Allendorf, M. D., Bauer, C. A., Bhakta, R. K., & Houk, R. J. T. (2009). Luminescent metal–organic frameworks. Chemical Society Reviews, 38(5), 1330–1352.
Bae, Y. S., & Snurr, R. Q. (2011). Development and evaluation of porous materials for carbon dioxide separation and capture. Angewandte Chemie International Edition, 50(49), 11586–11596.
Banerjee, R., Phan, A., Wang, B., Knobler, C., Furukawa, H., O'Keeffe, M., & Yaghi, O. M. (2008). High-throughput synthesis of zeolitic imidazolate frameworks and application to CO2 capture. Science, 319(5865), 939–943.
Batten, S. R., Neville, S. M., & Turner, D. R. (2009). Coordination Polymers: Design, Analysis and Application. Royal Society of Chemistry.
Bieniek, A., Terzyk, A. P., Wisniewski, M., Roszek, K., Kowalczyk, P., Sarkisov, L., & Keskin, S. (2021). MOFs as therapy agents, drug carriers, imaging, biosensors in cancer. Progress in Materials Science, 117, 100743.
Blatov, V. A., Shevchenko, A. P., & Proserpio, D. M. (2014). Applied Topological Analysis of Crystal Structures with the Program Package ToposPro. Crystal Growth & Design, 14(7), 3576–3586.
Burtch, N. C., Jasuja, H., & Walton, K. S. (2014). Water stability and adsorption in metal-organic frameworks. Chemical Reviews, 114(20), 10575–10612.
Burtch, N. C., Jasuja, H., & Walton, K. S. (2014). Water stability and adsorption in metal–organic frameworks. Chemical Reviews, 114(20), 10575–10612.
Buru, C. T., Majewski, M. B., Howarth, A. J., Lavroff, R. H., Kung, C. W., Peters, A. W., Goswami, S., & Farha, O. K. (2018). Improving the efficiency of catalytic epoxide ring-opening reactions using UiO-type metal-organic frameworks as catalysts. ACS Applied Materials & Interfaces, 10(12), 11420–11425.
Caskey, S. R., Wong-Foy, A. G., & Matzger, A. J. (2008). Dramatic tuning of carbon dioxide uptake via metal substitution in a coordination polymer with cylindrical pores. Journal of the American Chemical Society, 130(33), 10870–10871.
Chapman, K. W., Halder, G. J., & Chupas, P. J. (2009). Pressure-Induced Amorphization and Porosity Modification in a Metal–Organic Framework. Journal of the American Chemical Society, 131, 17546–17547.
Cheetham, A. K., Rao, C. N. R., & Feller, R. K. (2006). Structural Diversity and Chemical Trends in Hybrid Inorganic–Organic Framework Materials. Chemical Communications, 46, 4780–4795.
Chen, W.-H., Chen, Y.-H., Thapa, K. B., Liu, S.-M., & Chen, J.-D. (2025). Coordination polymers constructed from bis-pyridyl-bis-amides and 1,4,5,8-naphthalenetetracarboxylic acid: ligand transformation and metal ion sensing. CrystEngComm, 27(5), 606–615.
Chen, Y., Lykourinou, V., Hoang, T., Ming, L. J., Ma, S., & Musselman, R. L. (2012). How can proteins enter the interior of an MOF? Chemical Communications, 48(39), 6351–6353.
Chen, Y., Ma, S., & Zhuang, J. (2020). Magnetic resonance imaging with metal–organic frameworks. Accounts of Chemical Research, 53(3), 527–538.
Cho, S. H., Ma, B., & Nguyen, S. T. (2010). Chiral, porous coordination polymers as catalysts for asymmetric organic transformations. Inorganic Chemistry, 49(20), 10994–10996.
Chughtai, A. H., Ahmad, N., Younus, H. A., Laypkov, A., & Verpoort, F. (2015). Metal-organic frameworks: Versatile heterogeneous catalysts for efficient catalytic organic transformations. Chemical Society Reviews, 44(19), 6804–6849.
Corma, A., García, H., & Llabrés i Xamena, F. X. (2010). Engineering Metal-Organic Frameworks for Heterogeneous Catalysis. Chemical Reviews, 110(8), 4606–4655.
Corma, A., García, H., & Llabrés i Xamena, F. X. (2010). Engineering metal-organic frameworks for heterogeneous catalysis. Chemical Reviews, 110(8), 4606–4655.
Coudert, F. X. (2015). Responsive metal-organic frameworks and framework materials: Under pressure, taking the heat, in the spotlight, with friends. Chemistry of Materials, 27(6), 1905–1916.
Cui, Y., Yue, Y., Qian, G., & Chen, B. (2012). Luminescent functional metal–organic frameworks. Chemical Reviews, 112(2), 1126–1162.
Cui, Y., Zhang, J., He, H., Qian, G., & Chen, B. (2012). Multifunctional metal–organic frameworks. Chemical Society Reviews, 41(22), 6642–6664.
Dhakshinamoorthy, A., & Garcia, H. (2014). Catalysis by metal nanoparticles embedded on metal-organic frameworks. Chemical Society Reviews, 43(16), 5750–5765.
Dhakshinamoorthy, A., Alvaro, M., & Garcia, H. (2012). Commercial metal-organic frameworks as heterogeneous catalysts. Chemical Communications, 48(90), 11275–11288.
Dincă, M., & Long, J. R. (2007). High-Enthalpy Hydrogen Adsorption in Cation-Exchanged Variants of the Microporous Metal–Organic Framework Mn₃[(Mn₄Cl)₃(BTT)₈(CH₃OH)₁₀]₂. Journal of the American Chemical Society, 129, 11172–11176.
Farha, O. K., & Hupp, J. T. (2010). Rational design, synthesis, purification, and activation of metal–organic framework materials. Accounts of Chemical Research, 43(8), 1166–1175.
Farha, O. K., Eryazici, I., Jeong, N. C., Hauser, B. G., Wilmer, C. E., Sarjeant, A. A., Snurr, R. Q., Nguyen, S. T., Yazaydin, A. Ö., & Hupp, J. T. (2012). Metal–Organic Framework Materials with Ultrahigh Surface Areas: Is the Sky the Limit? Journal of the American Chemical Society, 134, 15016–15021.
Férey, G. (2008). Hybrid porous solids: Past, present, future. Chemical Society Reviews, 37(1), 191–214.
Férey, G., Mellot-Draznieks, C., Serre, C., & Millange, F. (2005). Crystallized Frameworks with Giant Pores: Are There Limits to the Possible? Accounts of Chemical Research, 38(4), 217–225.
Furukawa, H., Cordova, K. E., O'Keeffe, M., & Yaghi, O. M. (2013). The chemistry and applications of metal-organic frameworks. Science, 341(6149), 1230444.
Gándara, F., Bennett, T. D., & Cheetham, A. K. (2014). Mechanical Properties of Metal–Organic Frameworks: A Review of the Experimental and Computational Studies. Dalton Transactions, 43, 10316–10323.
Gascon, J., Corma, A., Kapteijn, F., & Llabrés i Xamena, F. X. (2014). Metal organic framework catalysis: Quo vadis? Chemical Society Reviews, 43(16), 6141–6172.
Goesten, M. G., Ramos-Fernandez, E. V., Juan-Alcañiz, J., Serra-Crespo, P., Kapteijn, F., & Gascon, J. (2013). Small-Angle X-ray Scattering Study of the Breathing Phase Transition in MIL-53(Al). CrystEngComm, 15, 9249–9257.
Gong, Y. N., Wang, Y., Hu, Z., & Zeng, M. (2019). MOF-based materials for water treatment. Journal of Hazardous Materials, 368, 123–143.
He, C., Lu, K., Liu, D., & Lin, W. (2014). Nanoscale metal–organic frameworks for the co-delivery of cisplatin and pooled siRNAs to enhance therapeutic efficacy in drug-resistant ovarian cancer cells. Journal of the American Chemical Society, 136(14), 5181–5184.
He, Y.-C., Yu, H.-L., Zhao, K.-Y., Wang, Y., Geng, C.-S., Wu, S., Yang, H.-K., & Zhao, F.-H. (2023). Three new Zn(ii) coordination polymers for highly selective and sensitive detection of Fe³⁺. CrystEngComm, 25(2), 606–615.
Herm, Z. R., Bloch, E. D., & Long, J. R. (2014). Hydrocarbon separations in metal-organic frameworks. Science, 340(6135), 960–964.
Horcajada, P., Chalati, T., Serre, C., Gillet, B., Sebrie, C., Baati, T., Eubank, J. F., Heurtaux, D., Clayette, P., Kreuz, C., Chang, J.-S., Hwang, Y. K., Marsaud, V., Bories, P.-N., Cynober, L., Gil, S., Férey, G., Couvreur, P., & Gref, R. (2010). Porous metal–organic-framework nanoscale carriers as a potential platform for drug delivery and imaging. Nature Materials, 9(2), 172–178.
Hu, Z., Deibert, B. J., & Li, J. (2014). Luminescent metal–organic frameworks for chemical sensing and explosive detection. Chemical Society Reviews, 43(16), 5815–5840.
Hulvey, Z., Furman, J. D., Turner, S. A., Tang, M., & Cheetham, A. K. (2024). Structural Diversity in Coordination Polymers Composed of Divalent Transition Metals, 2,2′-Bipyridine, and Perfluorinated Dicarboxylates. Crystal Growth & Design, 24(15), 6326–6337.
James, S. L. (2003). Metal–Organic Frameworks. Chemical Society Reviews, 32(5), 276–288.
Ji, Z., Wang, H., Canossa, S., Wuttke, S., & Yaghi, O. M. (2020). Pore chemistry of metal-organic frameworks. Advanced Functional Materials, 30(44), 2000238.
Kitagawa, H., Munakata, M., & Kondo, M. (1999). Syntheses and Properties of Oxidation-State-Tunable Coordination Networks. Coordination Chemistry Reviews, 190–192, 937–955.
Kundu, T., Mitra, S., Mandal, S. K., & Díaz, D. D. (2016). Multifunctional metal–organic frameworks for environmental applications: Adsorption, sensing, and degradation. ACS Sustainable Chemistry & Engineering, 4(8), 3974–3985.
Lee, J., Farha, O. K., Roberts, J., Scheidt, K. A., Nguyen, S. T., & Hupp, J. T. (2009). Metal-organic framework materials as catalysts. Chemical Society Reviews, 38(5), 1450–1459.
Li, B., Wen, H. M., Cui, Y., Zhou, W., Qian, G., & Chen, B. (2016). Emerging multifunctional metal-organic framework materials. Advanced Materials, 28(40), 8819–8860.
Li, B., Wen, H. M., Zhou, W., & Chen, B. (2016). Porous metal-organic frameworks for gas storage and separation: What, how, and why? Journal of Physical Chemistry Letters, 5(20), 3468–3479.
Li, H., Eddaoudi, M., O'Keeffe, M., & Yaghi, O. M. (1999). Design and Synthesis of an Exceptionally Stable and Highly Porous Metal–Organic Framework. Nature, 402(6759), 276–279.
Li, H., Eddaoudi, M., O'Keeffe, M., & Yaghi, O. M. (2023). Design and synthesis of metal-organic frameworks: Fundamental principles and advanced applications. Chemical Reviews, 123(4), 1895-1942.
Li, J. R., Kuppler, R. J., & Zhou, H. C. (2009). Selective gas adsorption and separation in metal-organic frameworks. Chemical Society Reviews, 38(5), 1477–1504.
Li, S., Huo, F., & Jiang, H. L. (2021). Biodegradable metal–organic frameworks for biomedical applications. Advanced Materials, 33(4), 2003000.
Lin, K. Y. A., Chang, H. A., & Hsu, C. J. (2015). Iron-based metal organic framework, MIL-88A, as a heterogeneous persulfate catalyst for decolorization of Rhodamine B in water. Journal of Hazardous Materials, 287, 421–429.
Lin, S.-Y., Shen, Y.-L., Chen, W.-H., Govindaraj, M., & Chen, J.-D. (2024). Cu(II) Coordination Polymers Containing Mixed Ligands with Different Flexibilities: Structural Diversity and Iodine Adsorption. Molecules, 29(2), 311.
Liu, D., Lu, K., Poon, C., & Lin, W. (2014). Metal–Organic Frameworks as Sensory Materials and Imaging Agents. Inorganic Chemistry, 53, 1916–1924.
Liu, J.-Q., Luo, Z.-D., Pan, Y., Singh, A. K., Trivedi, M., & Kumar, A. (2020). Recent developments in luminescent coordination polymers: Designing strategies, sensing applications, and theoretical evidence. Coordination Chemistry Reviews, 406, 213145.
Loiseau, T., Volkringer, C., Marrot, J., Haouas, M., Taulelle, F., & Férey, G. (2006). MIL-96, a Porous Aluminum Trimesate 3D Structure Constructed from a Hexagonal Network of 18-Membered Rings and M3-Oxo-Centered Trinuclear Units. Journal of the American Chemical Society, 128, 10223–10230.
Ma, L., Abney, C., & Lin, W. (2009). Enantioselective catalysis with homochiral metal-organic frameworks. Chemical Society Reviews, 38(5), 1248–1256.
MacGillivray, L. R. (2004). Crystal Engineering: From Molecules and Crystals to Materials. CrystEngComm, 6(76), 77–82.
Martineau-Corcos, C., Volkringer, C., Loiseau, T., Férey, G., Haouas, M., & Taulelle, F. (2012). Insight into the Local Structure of Aluminum-Based MOFs: A Solid-State NMR Study of MIL-96 and MIL-100(Al). Chemistry of Materials, 24(13), 2630–2641.
Mason, J. A., Veenstra, M., & Long, J. R. (2014). Evaluating metal-organic frameworks for natural gas storage. Chemical Science, 5(1), 32–51.
McDonald, T. M., D'Alessandro, D. M., Krishna, R., & Long, J. R. (2011). Enhanced carbon dioxide capture upon incorporation of N,N′-dimethylethylenediamine in the metal–organic framework Cu–BTTri. Chemical Science, 2(10), 2022–2028.
Munnuri, S., Cano-Sarabia, M., Horcajada, P., & Garcia-Gonzalez, C. A. (2020). MOF-based scaffolds for tissue engineering: Progress and perspectives. Advanced Healthcare Materials, 9(6), 1901480.
Murray, L. J., Dincă, M., & Long, J. R. (2009). Hydrogen storage in metal-organic frameworks. Chemical Society Reviews, 38(5), 1294–1314.
Ohba, M., Yoneda, K., Agustí, G., Muñoz, M. C., Real, J. A., Yamasaki, M., Ando, H., Nakao, Y., Sakaki, S., & Okawa, H. (2009). Bidirectional Chemisorption of Guest Molecules in a Breathing Porous Coordination Polymer: Structural Analyses and Theoretical Studies. Angewandte Chemie International Edition, 48, 4767–4771.
Ramaswamy, P., Wong, N. E., & Shimizu, G. K. H. (2014). MOFs as proton conductors—challenges and opportunities. Chemical Society Reviews, 43(16), 5913–5932.
Roodenko, K., Han, Y., Cheng, H.-M., Wu, L.-Z., Tung, C.-H., Zhang, T., & Li, Z. (2015). Topography and Nanomechanics of MOF Thin Films: A Study by AFM Nanoindentation. Langmuir, 31(24), 6751–6758.
Rosen, A. S., Iyer, S. M., Ray, D., Yao, Z., Aspuru-Guzik, A., Gagliardi, L., Notestein, J. M., & Snurr, R. Q. (2021). Machine Learning the Quantum-Chemical Properties of Metal–Organic Frameworks for Accelerated Materials Discovery. Matter, 4(5), 1578–1597.
Rosi, N. L., Eckert, J., Eddaoudi, M., Vodak, D. T., Kim, J., O'Keeffe, M., & Yaghi, O. M. (2003). Hydrogen Storage in Microporous Metal-Organic Frameworks. Science, 300(5622), 1127–1129.
Rowsell, J. L. C., & Yaghi, O. M. (2004). Metal–Organic Frameworks: A New Class of Porous Materials. Microporous Mesoporous Materials, 73(1–2), 3–14.
Rowsell, J. L. C., Millward, A. R., Park, K. S., & Yaghi, O. M. (2004). Hydrogen Sorption in Functionalized Metal–Organic Frameworks. Journal of the American Chemical Society, 126(18), 5666–5667.
Seo, J. S., Whang, D., Lee, H., Jun, S. I., Oh, J., Jeon, Y. J., & Kim, K. (2000). A homochiral metal-organic porous material for enantioselective separation and catalysis. Nature, 404(6780), 982–986.
Serre, C., Millange, F., Thouvenot, C., Noguès, M., Marsolier, G., Louër, D., & Férey, G. (2002). Very Large Breathing Effect in the First Nanoporous Chromium (III)-Based Solids: MIL-53 or CrIII(OH)•{O2C–C6H4–CO2}•{HO2C–C6H4–CO2H}x•H2Oy. Journal of the American Chemical Society, 124, 13519–13526.
Simon-Yarza, T., Mielcarek, A., Couvreur, P., & Horcajada, P. (2016). Metal–organic frameworks for drug delivery: Current status and perspectives. Advanced Drug Delivery Reviews, 106, 119–132.
Sumida, K., Rogow, D. L., Mason, J. A., McDonald, T. M., Bloch, E. D., Herm, Z. R., Bae, T. H., & Long, J. R. (2012). Carbon dioxide capture in metal-organic frameworks. Chemical Reviews, 112(2), 724–781.
Sumida, K., Rogow, D. L., Mason, J. A., McDonald, T. M., Bloch, E. D., Herm, Z. R., Bae, T.-H., & Long, J. R. (2012). Carbon dioxide capture in metal–organic frameworks. Chemical Reviews, 112(2), 724–781.
Sun, D., Ye, L., & Li, Z. (2015). Visible-light-assisted aerobic photocatalytic oxidation of amines to imines over NH2-MIL-125(Ti). Applied Catalysis B: Environmental, 164, 428–437.
Sun, L., Campbell, M. G., & Dincă, M. (2016). Electrically conductive porous metal-organic frameworks. Angewandte Chemie International Edition, 55(11), 3566–3579.
Sun, L., Yang, L., Dou, J.-H., Li, J., Skorupskii, G., Mardini, M., Tan, K. O., Chen, T., Sun, C., & Oppenheim, J. J. (2022). Room-Temperature Quantitative Quantum Sensing of Lithium Ions with a Radical-Embedded Metal–Organic Framework. Journal of the American Chemical Society, 144, 19008–19016.
Tan, J.-C., Bennett, T. D., & Cheetham, A. K. (2010). Chemical Structure, Network Topology, and Porosity Effects on the Mechanical Properties of Zeolitic Imidazolate Frameworks. Proceedings of the National Academy of Sciences of the United States of America, 107(22), 9938–9943.
Trickett, C. A., Helal, A., Al-Maythalony, B. A., Yamani, Z. H., Cordova, K. E., & Yaghi, O. M. (2017). The chemistry of metal–organic frameworks for CO₂ capture, regeneration, and conversion. Nature Reviews Materials, 2(8), 1–16.
Trofimova, O. Y., Meshcheryakova, I. N., Druzhkov, N. O., Ershova, I. V., Maleeva, A. V., Cherkasov, A. V., Yakushev, I. A., Dorovatovskii, P. V., Aysin, R. R., & Piskunov, A. V. (2024). Structural diversity of cadmium coordination polymers based on an extended anilate-type ligand. CrystEngComm, 26(23), 3077–3087.
Uemura, K., Horike, S., Kitagawa, S., Ota, K., Ochi, N., & Haneda, T. (2006). Conformational Isomerism in a Flexible Coordination Polymer Crystal with a Gate-Opening Gas Adsorption Property. Angewandte Chemie International Edition, 45(25), 4112–4116.
Usman, M., Mendiratta, S., & Mehta, B. R. (2020). Progress in coordination polymer-based thermoelectric materials: Challenges and opportunities. Nano Energy, 70, 104479.
Valenzano, L., Civalleri, B., Chavan, S., Bordiga, S., Nilsen, M. H., Jakobsen, S., Lillerud, K. P., & Lamberti, C. (2011). Disclosing the Complex Structure of UiO-66 Metal–Organic Framework: A Synergic Combination of Experiment and Theory. Chemistry of Materials, 23(7), 1700–1718.
Wang, B., Côté, A. P., Furukawa, H., O'Keeffe, M., & Yaghi, O. M. (2008). Colossal cages in zeolitic imidazolate frameworks as selective carbon dioxide reservoirs. Nature, 453(7192), 207–211.
Wang, C., Liu, D., & Lin, W. (2013). Metal–organic frameworks as a tunable platform for designing functional molecular materials. Journal of the American Chemical Society, 135(36), 13222–13234.
Wang, C., Liu, X., Demir, N. K., Chen, J. P., & Li, K. (2016). Applications of water-stable metal-organic frameworks. Chemical Society Reviews, 45(18), 5107–5134.
Wang, C., Xie, Z., deKrafft, K. E., & Lin, W. (2011). Doping metal-organic frameworks for water oxidation, carbon dioxide reduction, and organic photocatalysis. Journal of the American Chemical Society, 133(34), 13445–13454.
Wang, H., Zhang, L., Chen, Z., Hu, J., Li, S., Wang, Z., & Liu, J. (2017). MOF-derived materials for electrochemical energy applications. Energy Storage Materials, 8, 139–150.
Wang, H., Zhang, Q., & Tang, B. Z. (2020). Metal–organic frameworks for light-emitting and imaging applications. Chemical Society Reviews, 49(11), 3705–3728.
Wang, J., Liu, X., Yuan, S., & Liu, Y. (2019). Catalytic degradation of organic pollutants over MOF-based materials: A review. Chemical Engineering Journal, 378, 122149.
Wang, S., Wang, J., & Zhang, X. (2019). Adsorptive removal of organic pollutants from wastewater by metal–organic frameworks. Chemical Engineering Journal, 370, 1451–1463.
Wang, Z., Zhang, S., Chen, Y., Wang, L., Wang, C., & Lin, W. (2020). Luminescent Lanthanide Coordination Polymers. Chemical Society Reviews, 49(16), 5466–5512.
Willems, T. F., Rycroft, C. H., Kazi, M., Meza, J. C., & Haranczyk, M. (2012). Algorithms and Tools for High-Throughput Geometry-Based Analysis of Crystalline Porous Materials. Microporous Mesoporous Materials, 149(1), 134–141.
Wu, H., Gong, Q., Olson, D. H., & Li, J. (2012). Commensurate adsorption of hydrocarbons and alcohols in microporous metal-organic frameworks. Chemical Reviews, 112(2), 836–868.
Wyszogrodzka, G., Marszałek, B., Gil, B., & Dorożyński, P. (2016). Metal–organic frameworks: Mechanisms of antibacterial action and potential applications. Drug Discovery Today, 21(6), 1009–1018.
Xia, W., Mahmood, A., Zou, R., & Xu, Q. (2015). Metal-organic frameworks and their derived nanostructures for electrochemical energy storage and conversion. Energy & Environmental Science, 8(6), 1837–1866.
Xiao, J. D., Jiang, H. L., Sakamoto, H., Chen, B., & Xu, Q. (2017). Metal-organic frameworks as platforms for functional materials. Angewandte Chemie International Edition, 56(3), 939–943.
Xie, L. S., Skorupskii, G., & Dincă, M. (2020). Electrically conductive metal–organic frameworks. Chemical Reviews, 120(16), 8536–8580.
Yang, J., Zhang, T., Lu, W. (2021). Functionalization of Metal–Organic Frameworks for Enhanced Applications. Coordination Chemistry Reviews, 429, 213622.
Yang, Q., Xu, Q., & Jiang, H. L. (2017). Metal-organic frameworks meet metal nanoparticles: Synergistic effect for enhanced catalysis. Chemical Society Reviews, 46(14), 4774–4808.
Yusuf, V. F., Malek, N., & Kailasa, S. K. (2022). Review on Metal–Organic Framework Classification, Synthetic Approaches, and Influencing Factors: Applications in Energy, Drug Delivery, and Wastewater Treatment. ACS Omega, 7, 44507–44531.
Zhang, Y., Yuan, S., Day, G., Wang, X., Yang, X., & Zhou, H. C. (2018). Luminescent sensors based on metal–organic frameworks. Coordination Chemistry Reviews, 354, 28–45.
Zhang, Z., Yao, Z. Z., Xiang, S., & Chen, B. (2014). Perspective of microporous metal–organic frameworks for CO₂ capture and separation. Energy & Environmental Science, 7(8), 2868–2899.
Zhao, R., Liang, Z., Zou, R., & Xu, Q. (2018). Metal-organic frameworks for batteries. Advanced Energy Materials, 8(10), 1703015.
Zhao, S.-N., Wang, G., Poelman, D., & Van Der Voort, P. (2022). Luminescent Lanthanide MOFs: A Unique Platform for Chemical Sensing. Materials, 11(572), 1–20.
Zhao, X., Wang, Y., Li, D.-S., Bu, X., & Feng, P. (2018). Metal–Organic Frameworks for Separation. Advanced Materials, 30, 1705189.
Zhou, T. Y., Xu, S. Q., Wen, Q., Pang, Z. F., & Zhao, X. (2014). One-step construction of two different kinds of pores in a 2D covalent organic framework. Chemical Communications, 50(64), 8751–8753.
Zhou, Y.-N., Zhao, S.-J., Leng, W.-X., Zhang, X., Liu, D.-Y., Zhang, J.-H., Sun, Z.-G., Zhu, Y.-Y., Zheng, H.-W., & Jiao, C.-Q. (2023). Dual-Functional Eu-Metal-Organic Framework with Ratiometric Fluorescent Broad-Spectrum Sensing of Benzophenone-like Ultraviolet Filters and High Proton Conduction. Inorganic Chemistry, 62, 12730–12740.
Zhu, Q.-L., & Xu, Q. (2014). Metal–Organic Framework Composites. Chemical Society Reviews, 43, 5468–5512.
Zhuang, J., Kuo, C. H., Chou, L. Y., Liu, D. Y., Weerapana, E., & Tsung, C. K. (2014). Optimized metal-organic framework nanospheres for drug delivery: Evaluation of small-molecule encapsulation. ACS Nano, 8(3), 2812–2819.
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Maharaj Singh Educational Research Development Society

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.