Plant Growth Promoting Rhizobacteria: Their potential in sustainable Agriculture

Authors

  • Aarti Department of Botany, R.B.S. College, Agra (Affiliated to Dr. Bhimrao Ambedkar University, Agra, Uttar Pradesh, India)
  • Sujata Department of Botany, R.B.S. College, Agra (Affiliated to Dr. Bhimrao Ambedkar University, Agra, Uttar Pradesh, India)
  • Shivam Parmar Department of Botany, R.B.S. College, Agra (Affiliated to Dr. Bhimrao Ambedkar University, Agra, Uttar Pradesh, India)
  • Anil Kumar* Department of Botany, R.B.S. College, Agra (Affiliated to Dr. Bhimrao Ambedkar University, Agra, Uttar Pradesh, India)

DOI:

https://doi.org/10.59436/Jsianev4i2/270

Keywords:

PGPR, Aminocyclopropane, Sustainable Agriculture, microbes, biological

Abstract

Plant growth-promoting rhizobacteria (PGPR) are bacteria that inhabit plant roots and raise plant development through diverse direct and indirect mechanisms, including biological nitrogen fixation, the production of 1-amino-cyclopropane-1-carboxylate deaminase (ACC), siderophore synthesis, production of phytohormone and phosphate solubilization. Researchers are engaged in elucidating the role of PGPR in plant growth-promoting mechanisms. The potential of PGPR in agriculture is progressively rising as it presents an appealing option to chemical fertilizers, pesticides and other additives. These microbes exhibit both antagonistic and synergistic interactions with other soil microbes, which may benefit sustainable agriculture by primarily relying more on biological than chemical processes to sustain soil health and promote plant growth in stressful conditions. This paper thoroughly examines the recent efficacy and advancement of PGPR in agricultural enhancement, along with their mechanisms of action and features that promote plant growth.

References

Abriouel H, Franz CM, Omar NB, Gálvez A (2011) Diversity and applications of Bacillus bacteriocins. FEMS microbiology reviews 35(1): 201-232. DOI: https://doi.org/10.1111/j.1574-6976.2010.00244.x

Ait Barka E, Nowak J, Clément C (2006) Enhancement of chilling resistance of inoculated grapevine plantlets with a plant growth-promoting rhizobacterium, Burkholderiaphytofirmans strain PsJN. Applied and environmental microbiology 72(11):7246-52. DOI: https://doi.org/10.1128/AEM.01047-06

Akiyoshi, D. E., Regier, D. A., & Gordon, M. P. (1987). Cytokinin production by Agrobacterium and Pseudomonas spp. Journal of bacteriology, 169(9), 4242-4248. DOI: https://doi.org/10.1128/jb.169.9.4242-4248.1987

Ali SZ, Sandhya V, Grover M, Kishore N, Rao LV, Venkateswarlu B (2009) Pseudomonas sp. strain AKM-P6 enhances tolerance of sorghum seedlings to elevated temperatures. Biology and Fertility of Soils 46(1):45-55. DOI: https://doi.org/10.1007/s00374-009-0404-9

Ali, S. Z., Sandhya, V., Grover, M., Linga, V. R., & Bandi, V. (2011). Effect of inoculation with a thermotolerant plant growth promoting Pseudomonas putida strain AKMP7 on growth of wheat (Triticum spp.) under heat stress. Journal of Plant Interactions, 6(4), 239-246. DOI: https://doi.org/10.1080/17429145.2010.545147

Atzorn, R., Crozier, A., Wheeler, C. T., & Sandberg, G. (1988). Production of gibberellins and indole-3-acetic acid by Rhizobium phaseoli in relation to nodulation of Phaseolus vulgaris roots. Planta, 175, 532-538. DOI: https://doi.org/10.1007/BF00393076

Bal, H. B., Nayak, L., Das, S., & Adhya, T. K. (2013). Isolation of ACC deaminase producing PGPR from rice rhizosphere and evaluating their plant growth promoting activity under salt stress. Plant and soil, 366, 93-105. DOI: https://doi.org/10.1007/s11104-012-1402-5

Baniaghil N, Arzanesh MH, Ghorbanli M, Shahbazi M (2013) The effect of plant growth promoting rhizobacteria on growth parameters, antioxidant enzymes and microelements of canola under salt stress. J Appl Environ Biol Sci. 3(1):17-27.

Bastián, F., Cohen, A., Piccoli, P., Luna, V., Bottini*, R., Baraldi, R., & Bottini, R. (1998). Production of indole-3-acetic acid and gibberellins A 1 and A 3 by Acetobacter diazotrophicus and Herbaspirillumseropedicae in chemically-defined culture media. Plant growth regulation, 24, 7-11. DOI: https://doi.org/10.1023/A:1005964031159

Boiero L, Perrig D, Masciarelli O, Penna C, Cassan F, Luna V (2007) Phytohormone production by three strains of Bradyrhizobium japonicum and possible physiological and technological implications. Appl MicrobiolBiotechnol 74:874–880. DOI: https://doi.org/10.1007/s00253-006-0731-9

Cappuccino JG,Sherman N (1992) Biochemical activities of microorganisms. Microbiology, A Laboratory Manual. The Benjamin/Cummings Publishing Co. California, USA, 188-247.

Cassán, F., Vanderleyden, J., &Spaepen, S. (2014). Physiological and agronomical aspects of phytohormone production by model plant-growth-promoting rhizobacteria (PGPR) belonging to the genus Azospirillum. Journal of Plant Growth Regulation, 33, 440-459. DOI: https://doi.org/10.1007/s00344-013-9362-4

Chincholkar SB, Chaudhari BL, Talegaonkar SK (2000) RM Kothari. Biocontrol Potential and its Exploitation in Sustainable Agriculture: Volume 1: Crop Diseases, Weeds, and Nematodes 1: 49. DOI: https://doi.org/10.1007/978-1-4615-4209-4_5

Christensen JH, Hewitson B, Busuioc A, Chen A, Gao X, Held I, Jones R, Kolli RK, Kwon WT, Laprise R, Magaña Rueda V. Regional climate projections. Chapter 11.

Cohen AC, Bottini R, Piccoli PN (2008) AzospirillumbrasilenseSp 245 produces ABA in chemically-defined culture medium and increases ABA content in arabidopsis plants. Plant Growth Regulation 54(2): 97-103. DOI: https://doi.org/10.1007/s10725-007-9232-9

Dobbelaere S,Vanderleyden J, Okon Y (2003) Plant growth-promoting effects of diazotrophs in the rhizosphere. Critical reviews in plant sciences 22(2) :107-149. DOI: https://doi.org/10.1080/713610853

Dodd IC, Pérez-Alfocea F (2012) Microbial amelioration of crop salinity stress. Journal of Experimental Botany 63(9):3415-28. DOI: https://doi.org/10.1093/jxb/ers033

Drogue B, Doré H, Borland S, Wisniewski-Dyé F, Prigent-Combaret C (2012) Which specificity in cooperation between phytostimulating rhizobacteria and plants? Research in microbiology163(8):500-10. DOI: https://doi.org/10.1016/j.resmic.2012.08.006

Dudeja SS, Suneja S, Khurana AL (1997) Iron acquisition system and its role in legume-Rhizobium symbiosis. Indian Journal of Microbiology 37: 1-12.

Duffy, B., Schouten, A., & Raaijmakers, J. M. (2003). Pathogen self-defense: mechanisms to counteract microbial antagonism. Annual review of Phytopathology, 41(1), 501-538. DOI: https://doi.org/10.1146/annurev.phyto.41.052002.095606

Egamberdiyeva, D. (2007). The effect of plant growth promoting bacteria on growth and nutrient uptake of maize in two different soils. Applied soil ecology, 36(2-3), 184-189. DOI: https://doi.org/10.1016/j.apsoil.2007.02.005

Foster, R. C., Rovira, A. D., & Cock, T. W. (1983). Ultrastructure of the root-soil interface (pp. 157-pp).

Freebairn, H. T., & Buddenhagen, I. W. (1964). Ethylene production by Pseudomonas solanacearum. Nature, 202(4929), 313-314. DOI: https://doi.org/10.1038/202313a0

García de Salamone, I. E., Hynes, R. K., & Nelson, L. M. (2001). Cytokinin production by plant growth promoting rhizobacteria and selected mutants. Canadian Journal of microbiology, 47(5), 404-411. DOI: https://doi.org/10.1139/w01-029

Glick BR (1995) The enhancement of plant growth by free-living bacteria. Canadian journal of microbiology 41(2): 109-117. DOI: https://doi.org/10.1139/m95-015

Goswami D, Pithwa S, Dhandhukia P,Thakker JN (2014) Delineating Kocuriaturfanensis 2M4 as a credible PGPR: a novel IAA-producing bacteria isolated from saline desert. Journal of Plant Interactions 9(1): 566-576. DOI: https://doi.org/10.1080/17429145.2013.871650

Granada C, da Costa, PB, Lisboa BB, Vargas LK,Passaglia LMP (2013) Comparison among bacterial communities present in arenized and adjacent areas subjected to different soil management regimes. Plant Soil373: 339-358. doi:10.1007/s11104-013-1796-8 DOI: https://doi.org/10.1007/s11104-013-1796-8

Gray EJ, Smith DL (2005) Intracellular and extracellular PGPR: commonalities and distinctions in the plant–bacterium signaling processes. Soil biology and biochemistry37(3): 395-412. DOI: https://doi.org/10.1016/j.soilbio.2004.08.030

Guerinot ML (1994) Microbial iron transport. Annual review of microbiology 48(1): 743-772. DOI: https://doi.org/10.1146/annurev.micro.48.1.743

Haas D,Défago G (2005) Biological control of soil-borne pathogens by fluorescent pseudomonads. Nature reviews microbiology 3(4): 307-319. doi:10.1038/nrmicro1129 DOI: https://doi.org/10.1038/nrmicro1129

He H, Silo-Suh LA, Handelsman J,Clardy J (1994) Zwittermicin A, an antifungal and plant protection agent from Bacillus cereus. Tetrahedron letters 35(16): 2499-2502. DOI: https://doi.org/10.1016/S0040-4039(00)77154-1

Johri BN, Sharma A,Virdi JS (2003) Rhizobacterial diversity in India and its influence on soil and plant health. Biotechnology in India I: 49-89 DOI: https://doi.org/10.1007/3-540-36488-9_2

Kang, S. M., Radhakrishnan, R., Khan, A. L., Kim, M. J., Park, J. M., Kim, B. R., ... & Lee, I. J. (2014). Gibberellin secreting rhizobacterium, Pseudomonas putida H-2-3 modulates the hormonal and stress physiology of soybean to improve the plant growth under saline and drought conditions. Plant Physiology and Biochemistry, 84, 115-124. DOI: https://doi.org/10.1016/j.plaphy.2014.09.001

Karadeniz, A. S. U. M. A. N., Topcuoğlu, Ş. F., &İnan, S. Ü. H. E. Y. L. A. (2006). Auxin, gibberellin, cytokinin and abscisic acid production in some bacteria. World Journal of Microbiology and Biotechnology, 22, 1061-1064. DOI: https://doi.org/10.1007/s11274-005-4561-1

Khan AL, Waqas M, Kang SM, Al-Harrasi A, Hussain J, Al-Rawahi A, Al-Khiziri S, Ullah I, Ali L, Jung H, Lee IJ (2014) Bacterial endophyte Sphingomonassp. LK11 produces gibberellins and IAA and promotes tomato plant growth. J Microbiol 52(8):689–695. DOI: https://doi.org/10.1007/s12275-014-4002-7

Kloepper JW (1978) Plant growth-promoting rhizobacteria on radishes. In Proc. of the 4th Internet. Conf. on Plant Pathogenic Bacter, Station de PathologieVegetale et Phytobacteriologie, INRA, Angers, France, 1978 2: 879-882

Kloepper JW, Ryu CM, Zhang S (2004) Induced systemic resistance and promotion of plant growth by Bacillus spp. Phytopathology 94(11): 1259-1266. DOI: https://doi.org/10.1094/PHYTO.2004.94.11.1259

Konetschny RS, Jung M, Meiwes J, Zahner H (1990) Staphyloferrin A: a structurally new siderophore from Staphylococci. Eur J Biochem 191:65–74. DOI: https://doi.org/10.1111/j.1432-1033.1990.tb19094.x

Korat K, Dave BP, Dube HC (2001) Detection and chemical characterization of siderophores produced by certain fungi. Indian Journal of Microbiology 41(2): 87-92

Kumar A, Maurya BR, Raghuwanshi R (2014) Isolation and characterization of PGPR and their effect on growth, yield and nutrient content in wheat (Triticumaestivum L.). Biocatal. Agric. Biotechnol3: 121-128. doi: 10.1016/j.bcab.2014.08.003 DOI: https://doi.org/10.1016/j.bcab.2014.08.003

Kumari P, Meena M, Upadhyay RS (2018) Characterization of plant growth promoting rhizobacteria (PGPR) isolated from the rhizosphere of Vigna radiata (mung bean). Biocatalysis and agricultural biotechnology 16: 155-162. DOI: https://doi.org/10.1016/j.bcab.2018.07.029

Lipper, L., Thornton, P., Campbell, B. M., Baedeker, T., Braimoh, A., Bwalya, M., ... &Torquebiau, E. F. (2014). Climate-smart agriculture for food security. Nature climate change, 4(12), 1068-1072. DOI: https://doi.org/10.1038/nclimate2437

Loper E, Buyer JS (1991) Siderophores in microbial interactions on plant surfaces. Mol Plant Microbe Interact 4:5–13 DOI: https://doi.org/10.1094/MPMI-4-005

Maheshwari DK, Dheeman S, Agarwal M (2015) Phytohormone-producing PGPR for sustainable agriculture. In Bacterial metabolites in sustainable agroecosystem :159-182. Springer, Cham. DOI 10.1007/978-3-319-24654-3_7 DOI: https://doi.org/10.1007/978-3-319-24654-3_7

Maksimov IV (2011) Abizgildina, RR y Pusenkova, LI Plant growth promoting rhizobacteria as alternative to chemical crop protectors from pathogens. Appl BiochemMicrobiol47(4): 333. DOI: https://doi.org/10.1134/S0003683811040090

Masciarelli, O., Llanes, A., & Luna, V. (2014). A new PGPR co-inoculated with Bradyrhizobium japonicum enhances soybean nodulation. Microbiological research, 169(7-8), 609-615. DOI: https://doi.org/10.1016/j.micres.2013.10.001

Mayak S, Tirosh T, Glick BR (2004) Plant growth-promoting bacteria confer resistance in tomato plants to salt stress. Plant physiology and Biochemistry 42(6):565-72. DOI: https://doi.org/10.1016/j.plaphy.2004.05.009

Miller, A. J., Fan, X., Orsel, M., Smith, S. J., & Wells, D. M. (2007). Nitrate transport and signalling. Journal of experimental Botany, 58(9), 2297-2306. DOI: https://doi.org/10.1093/jxb/erm066

Mok, D. W., & Mok, M. C. (1994). Cytokininschemistry, activity, and function. CRC press.

Mouazen AM, Kuang B (2016) On-line visible and near infrared spectroscopy for in-field phosphorous management. Soil Tillage Res155: 471-477. doi: 10.1016/j.still.2015.04.003 DOI: https://doi.org/10.1016/j.still.2015.04.003

Nakbanpote W, Panitlurtumpai N, Sangdee A, Sakulpone N, Sirisom P, Pimthong A (2014) Salt-tolerant and plant growth-promoting bacteria isolated from Zn/Cd contaminated soil: identification and effect on rice under saline conditions. Journal of Plant Interactions 9(1):379-87. DOI: https://doi.org/10.1080/17429145.2013.842000

Neeraja C, Anil K, Purushotham P, Suma K, Sarma PVSRN, Moerschbacher BM, Podile AR (2010) Biotechnological approaches to develop bacterial chitinases as a bioshield against fungal diseases of plants. Critical reviews in biotechnologyc30(3): 231-241. DOI: https://doi.org/10.3109/07388551.2010.487258

Page, W. J. (1993). Growth conditions for the demonstration of siderophores and iron-repressible outer membrane proteins in soil bacteria, with an emphasis on free-living diazotrophs. DOI: https://doi.org/10.1016/B978-0-12-079870-4.50008-9

Pastor, A. V., Palazzo, A., Havlik, P., Biemans, H., Wada, Y., Obersteiner, M., ... & Ludwig, F. (2019). The global nexus of food–trade–water sustaining environmental flows by 2050. Nature Sustainability, 2(6), 499-507. DOI: https://doi.org/10.1038/s41893-019-0287-1

Patel JS, Kharwar RN, Singh HB, Upadhyay RS, Sarma BK (2017) Trichoderma asperellum (T42) and Pseudomonas fluorescens (OKC)-enhances resistance of pea against Erysiphe pisi through enhanced ROS generation and lignifications. Frontiers in microbiology 8:306. DOI: https://doi.org/10.3389/fmicb.2017.00306

Pinton, R., Varanini, Z., &Nannipieri, P. (2000). The rhizosphere as a site of biochemical interactions among soil components, plants, and microorganisms. In The rhizosphere (pp. 17-34). CRC press. DOI: https://doi.org/10.1201/9780849384974-7

Probanza, A., Garcıa, J. L., Palomino, M. R., Ramos, B., &Mañero, F. G. (2002). Pinus pinea L. seedling growth and bacterial rhizosphere structure after inoculation with PGPR Bacillus (B. licheniformis CECT 5106 and B. pumilus CECT 5105). Applied Soil Ecology, 20(2), 75-84. DOI: https://doi.org/10.1016/S0929-1393(02)00007-0

Riley, M. A., & Wertz, J. E. (2002). Bacteriocins: evolution, ecology, and application. Annual Reviews in Microbiology, 56(1), 117-137. DOI: https://doi.org/10.1146/annurev.micro.56.012302.161024

Sayyed, R. Z., Chincholkar, S. B., Reddy, M. S., Gangurde, N. S., & Patel, P. R. (2012). Siderophore producing PGPR for crop nutrition and phytopathogen suppression. In Bacteria in agrobiology: disease management (pp. 449-471). Berlin, Heidelberg: Springer Berlin Heidelberg. DOI: https://doi.org/10.1007/978-3-642-33639-3_17

Sayyed, R. Z., Naphade, B. S., &Chincholkar, S. B. (2004). Ecologically competent rhizobacteria for plant growth promotion and disease management. Recent trends in biotechnology, 1, 1-6.

Sayyed RZ, Naphade BS, Chincholkar SB (2005) Ecologically competent rhizobacteria for plant growth promotion and disease management. In: Rai MK, Chikhale NJ, Thakare PV, Wadegaonkar PA, Ramteke AP (eds) Recent trends in biotechnology. Scientific, Jodhpur, India, 1–16

Sayyed RZ, Naphade BS, Chincholklar SB (2007a) Siderophore producing A. feacalis promoted the growth of Safed musali and Ashwagandha. J Med Arom Plants 29:1–5

Sayyed RZ, Patel PR, Patel DC (2007b) Plant growth promoting potential of P solubilizing Pseudomonassp occurring in acidic soil of Jalgaon. Asian J MicrobiolBiotechnol Environ Sci 9(4):925–928

Shah, A., Nazari, M., Antar, M., Msimbira, L. A., Naamala, J., Lyu, D., ... & Smith, D. L. (2021). PGPR in agriculture: A sustainable approach to increasing climate change resilience. Frontiers in Sustainable Food Systems, 5, 667546. DOI: https://doi.org/10.3389/fsufs.2021.667546

Siddiqui IA, Shaukat SS, Sheikh IH, Khan A (2006) Role of cyanide production by Pseudomonas fluorescens CHA0 in the suppression of root-knot nematode, Meloidogyne javanica in tomato. World Journal of Microbiology and Biotechnology 22(6): 641-650. DOI: https://doi.org/10.1007/s11274-005-9084-2

Silo-Suh L A, Lethbridge BJ, Raffel SJ, He H, Clardy J, Handelsman J (1994) Biological activities of two fungistatic antibiotics produced by Bacillus cereus UW85. Applied and environmental microbiology60(6): 2023-2030. DOI: https://doi.org/10.1128/aem.60.6.2023-2030.1994

Singh R, Soni SK, Patel RP, Kalra A (2013) Technology for improving essential oil yield of OcimumbasilicumL.(sweet basil) by application of bioinoculant colonized seeds under organic field conditions. Industrial Crops and Products 45:335-42. DOI: https://doi.org/10.1016/j.indcrop.2013.01.003

Van Loon LC, Bakker PAHM, Pieterse CMJ (1998) Systemic resistance induced by rhizosphere bacteria. Annual review of phytopathology 36(1): 453-483. DOI: https://doi.org/10.1146/annurev.phyto.36.1.453

Van Wees SC, Pieterse CM, Trijssenaar A, Van't Westende Y A, Hartog F, Van Loon LC (1997) Differential induction of systemic resistance in Arabidopsis by biocontrol bacteria. Molecular plant-microbe interactions10(6): 716-724. DOI: https://doi.org/10.1094/MPMI.1997.10.6.716

Van Wees SC, Van der Ent S, Pieterse CM (2008) Plant immune responses triggered by beneficial microbes. Current opinion in plant biology 11(4): 443-448. DOI: https://doi.org/10.1016/j.pbi.2008.05.005

Vyas P, Gulati A (2009) Organic acid production in vitro and plant growth promotion in maize under controlled environment by phosphate-solubilizing fluorescent Pseudomonas. BMC Microbiol 9: 174. DOI: https://doi.org/10.1186/1471-2180-9-174

Xu G, X. Fan, AJ Miller (2012) Plant nitrogen assimilation and use efficiency. Ann. Rev. Plant Biol. 63:153–182. DOI: https://doi.org/10.1146/annurev-arplant-042811-105532

Downloads

Published

2024-06-25

How to Cite

Plant Growth Promoting Rhizobacteria: Their potential in sustainable Agriculture. (2024). Journal of Science Innovations and Nature of Earth, 4(2), 40-46. https://doi.org/10.59436/Jsianev4i2/270

Similar Articles

1-10 of 26

You may also start an advanced similarity search for this article.