Endophytes Unveiled: Microbial Allies in Plant Growth and Stress Management

Authors

  • Devesh Kumar* * Department of Botany, Raja Balwant Singh (RBS) College, Agra, Affiliated to Dr. Bhimrao Ambedkar University, Agra, Uttar Pradesh, India

DOI:

https://doi.org/10.59436/jsiane.351.2583-2093

Keywords:

Endophytes, crop management, Stress Management, eco-friendly agriculture, agrochemicals

Abstract

Endophytes are microscopic creatures that live in plants' inner tissues and don't seem to inflict any harm there.  In particular, they improve nutrient uptake, produce growth-regulating hormones, and make plants more resistant to drought, salt, and severe temperatures, all of which contribute to plant development. Moreover, these microbes help defend plants against pathogens and herbivores by generating antimicrobial substances and activating plant defense mechanisms. Their functions in nitrogen fixation, phosphate mobilization, and siderophore secretion also contribute significantly to plant growth and yield. With the advent of molecular and genomic tools, the intricate relationships between endophytes and their host plants are being increasingly understood, highlighting their potential in eco-friendly agriculture. Utilizing endophytes as natural inoculants or biological control agents offers a promising alternative to synthetic agrochemicals, paving the way for sustainable and resilient farming systems. This review highlights the pivotal role of endophytes in enhancing plant performance and supports their broader application in contemporary crop management.

References

Ahmad, T., Bashir, A., Farooq, S., & Riyaz-Ul-Hassan, S. (2022). Burkholderia gladioli E39CS3 induces resistance in Crocus sativus against Fusarium oxysporum. Journal of Applied Microbiology, 132, 495–508. https://doi.org/10.1111/jam.15190

Akram, S., Ahmed, A., He, P., Liu, Y., Wu, Y., Munir, S., & He, Y. (2023). Uniting the Role of Endophytic Fungi against Plant Pathogens and Their Interaction. Journal of Fungi, 9, 72. https://doi.org/10.3390/jof9010072

Anjum, R., Afzal, M., Baber, R., Khan, M. A. J., Kanwal, W., Sajid, W., & Raheel, A. (2019). Endophytes: As potential biocontrol agent—Review and future prospects. Journal of Agricultural Science, 11, 113–222.

Card, S., Johnson, L., Teasdale, S., & Caradus, J. (2016). Deciphering endophyte behaviour: The link between endophyte biology and efficacious biological control agents. FEMS Microbiology Ecology, 92(7), fiw114. https://doi.org/10.1093/femsec/fiw114

Chaudhary, P., Agri, U., Chaudhary, A., Kumar, A., & Kumar, G. (2022). Endophytes and their potential in biotic stress management and crop Production. Frontiers in Microbiology, 13, 933017. https://doi.org/10.3389/fmicb.2022.933017

Cherry, A. J., Banito, A., Djegui, D., & Lomer, C. (2004). Suppression of Sesamia calamistis in maize with Beauveria bassiana. International Journal of Pest Management, 50, 67–73.

Chitnis, V. R., Suryanarayanan, T. S., Nataraja, K. N., Prasad, S. R., Oelmüller, R., & Shaanker, R. U. (2020). Fungal Endophyte-Mediated Crop Improvement: The Way Ahead. Frontiers in Plant Science, 11, 561007. https://doi.org/10.3389/fpls.2020.561007

Christakis, C. A., Daskalogiannis, G., Chatzaki, A., Markakis, E. A., Mermigka, G., Sagia, A., Rizzo, G. F., Catara, V., Lagkouvardos, I., Studholme, D. J., & Sarris, P. F. (2021). Endophytic bacterial isolates from halophytes demonstrate phytopathogen biocontrol and plant growth promotion under high salinity. Frontiers in Microbiology, 12, 681567. https://doi.org/10.3389/fmicb.2021.681567

Compant, S., Duffy, B., Nowak, J., Clément, C., & Barka, E. A. (2005). Plant growth-promoting bacteria for biocontrol: mechanisms and prospects. Applied and Environmental Microbiology, 71, 4951–4959. https://doi.org/10.1128/AEM.71.9.4951-4959.2005

Craig, K., Johnson, B. R., & Grunden, A. (2021). Leveraging Pseudomonas stress response for industrial applications. Frontiers in Microbiology, 12, 660134. https://doi.org/10.3389/fmicb.2021.660134

Dubey, A., Malla, M. A., Kumar, A., Dayanandan, S., & Khan, M. L. (2020). Plants endophytes: Unveiling hidden agenda for bioprospecting toward sustainable agriculture. Critical Reviews in Biotechnology, 40, 1210–1231.

Gakuubi, M. M., Munusamy, M., Liang, Z.-X., & Ng, S. B. (2021). Fungal endophytes: A promising frontier for discovery of novel bioactive compounds. Journal of Fungi, 7, 786.

Grabka, R., d’Entremont, T. W., Adams, S. J., Walker, A. K., Tanney, J. B., Abbasi, P. A., & Ali, S. (2023). Fungal endophytes and their role in agricultural plant protection against pests and pathogens. Agricultural Journal, 15, 384.

Grady, E. N., MacDonald, J., Liu, L., Richman, A., & Yuan, Z.-C. (2016). Knowledge and perspectives of Paenibacillus: a review. Microbial Cell Factories, 15, 203. https://doi.org/10.1186/s12934-016-0603-7

Gurulingappa, P., Sword, G. A., Murdoch, G., & McGee, P. A. (2010). Colonization of crop plants by fungal entomopathogens and their effects on two insect pests when in planta. Biological Control, 55, 34–41. https://doi.org/10.1016/j.biocontrol.2010.06.011

Jaber, L. R., & Araj, S.-E. (2018). Endophytic fungal entomopathogens and their interactions with aphids and parasitoids. Biological Control, 116, 53–61.

Khan, M. A., Asaf, S., Khan, A. L., Adhikari, A., Jan, R., Ali, S., Imran, M., Kim, K.-M., & Lee, I.-J. (2020). Plant growth-promoting endophytic bacteria augment growth and salinity tolerance in rice plants. Plant Biology, 850–862. https://doi.org/10.1111/plb.13124

Klieber, J., & Reineke, A. (2016). Epiphytic and endophytic activity of Beauveria bassiana against tomato leaf miner. Journal of Applied Entomology, 140, 580–589.

Morelli, M., Bahar, O., Papadopoulou, K. K., Hopkins, D. L., & Obradovic, A. (Eds.). (2020). Role of Endophytes in Plant Health and Defense Against Pathogens. Lausanne: Frontiers Media SA. https://doi.org/10.3389/978-2-88966-098-8

Mowafy, A. M., Fawzy, M. M., Gebreil, A., & Elsayed, A. (2021). Endophytic Bacillus, Enterobacter, and Klebsiella enhance the growth and yield of maize. Acta Agriculturae Scandinavica, Section B — Soil & Plant Science, 71, 237–246. https://doi.org/10.1080/09064710.2021.1880621

Mutungi, P. M., Wekesa, V. W., Onguso, J., Kanga, E., Baleba, S. B. S., & Boga, H. I. (2021). Culturable bacterial endophytes from shrubs growing along Lake Bogoria: antifungal potential and root rot protection in beans. Frontiers in Plant Science, 12, 796847. https://doi.org/10.3389/fpls.2021.796847

Okamoto, T., Shinjo, R., Nishihara, A., Uesaka, K., Tanaka, A., Sugiura, D., & Kondo, M. (2021). Genotypic Variation of Endophytic Nitrogen-Fixing Activity and Bacterial Flora in Rice Stem Based on Sugar Content. Frontiers in Plant Science, 12, 719259. https://doi.org/10.3389/fpls.2021.719259

Pirttilä, A. M., Parast Tabas, H. M., Baruah, N., & Koskimäki, J. J. (2021). Biofertilizers and biocontrol agents for agriculture: How to identify and develop new potent microbial strains and traits. Microorganisms, 9(4), 817. https://doi.org/10.3390/microorganisms9040817

Qayyum, M. A., Wakil, W., Arif, M. J., Sahi, S. T., & Dunlap, C. A. (2015). Endophytic Beauveria bassiana infecting Helicoverpa armigera in tomatoes. Biological Control, 90, 200–207.

Resquín-Romero, G., Garrido-Jurado, I., Delso, C., Ríos-Moreno, A., & Quesada-Moraga, E. (2016). Endophytic colonization improves foliar application of mycoinsecticides. Journal of Invertebrate Pathology, 136, 23–31.

Rondot, Y., & Reineke, A. (2018). Endophytic Beauveria bassiana in grapevine Vitis vinifera (L.) reduces infestation with piercing-sucking insects. Biological Control, 116, 82–89. https://doi.org/10.1016/j.biocontrol.2017.08.015

Saikkonen, K., Lehtonen, P., Helander, M., Koricheva, J., & Faeth, S. H. (2006). Model systems in ecology: dissecting the endophyte–grass literature. Trends in Plant Science, 11, 428–433.

Sanchez-Rodríguez, A. R., Raya-Díaz, S., Zamarreño, Á. M., García-Mina, J. M., del Campillo, M. C., & Quesada-Moraga, E. (2018). Beauveria bassiana increases wheat spike production and controls Spodoptera larvae. Biological Control, 116, 90–102.

Silva, L. G., Camargo, R. C., Mascarin, G. M., Nunes, P. S. O., Dunlap, C., & Bettiol, W. (2022). Dual functionality of Trichoderma: Biocontrol of Sclerotinia sclerotiorum and biostimulant of cotton plants. Frontiers in Plant Science, 13, 983127. https://doi.org/10.3389/fpls.2022.983127

Tedersoo, L., Bahram, M., & Zobel, M. (2020). How mycorrhizal associations drive plant population and community biology. Science, 367(6480), eaba1223. https://doi.org/10.1126/science.aba1223

Tiwari, P., Kang, S., & Bae, H. (2023). Plant-endophyte associations: Rich yet under-explored sources of novel bioactive molecules and applications. Microbiological Research, 266, 127241. https://doi.org/10.1016/j.micres.2022.127241

Tiwari, P., Bajpai, M., & Sharma, A. (2022). Antimicrobials from medicinal plants: Key examples, success stories and prospects in tackling antibiotic resistance. Letters in Drug Design & Discovery.

Tiwari, P., Khare, T., Shriram, V., Bae, H., & Kumar, V. (2021). Exploring synthetic biology strategies for producing potent antimicrobial phytochemicals. Biotechnology Advances, 48, 107729.

Tiwari, P., Srivastava, Y., Bajpai, M., & Sharma, A. (2021). Bioactive metabolites from natural sources: Prospects and significance in drug discovery and research. Bioingene PSJ, 1, 1–14.

Tiwari, P., Srivastava, Y., & Bae, H. (2021). Trends of pharmaceutical design of endophytes as anti-infective. Current Topics in Medicinal Chemistry, 21(17), 1572–1586.

Tiwari, P., Bajpai, M., Singh, L. K., Mishra, S., & Yadav, A. N. (2020). Phytohormones producing fungal communities: Metabolic engineering for abiotic stress tolerance in plants. In V. K. Gupta & M. Tuohy (Eds.), Agriculturally important fungi for sustainable agriculture. Springer.

Vega, F. E. (2018). Fungal entomopathogens as endophytes in biocontrol: a review. Mycologia, 110, 4–30.

Wang, J., Li, R., Zhang, H., et al. (2020). Beneficial bacteria activate nutrients and promote wheat growth under conditions of reduced fertilizer application. BMC Microbiology, 20, 38.

Wilson, T., & Thomas, C. (2023). Sustainable agriculture practices with endophytic microbes. Journal of Sustainable Farming, 48, 56–69.

Xia, Y., Liu, J., Chen, C., Mo, X., Tan, Q., He, Y., Wang, Z., Yin, J., & Zhou, G. (2022). The multifunctions and future prospects of endophytes and their metabolites in plant disease management. Microorganisms, 10, 1072.

Yousaf, M. J., Hussain, A., Hamayun, M., Iqbal, A., Irshad, M., Kim, H.-Y., & Lee, I.-J. (2021). Transformation of endophytic Bipolaris spp. into biotrophic pathogen under auxin cross-talk with brassinosteroids and abscisic acid. Frontiers in Bioengineering and Biotechnology, 9, 657635. https://doi.org/10.3389/fbioe.2021.657635

Zhang, L., Zhang, M., Huang, S., et al. (2022). A highly conserved core bacterial microbiota with nitrogen-fixation capacity inhabits the xylem sap in maize plants. Nature Communications, 13, 3361.

Downloads

Published

2025-03-05

How to Cite

Endophytes Unveiled: Microbial Allies in Plant Growth and Stress Management. (2025). Journal of Science Innovations and Nature of Earth, 5(1), 69-72. https://doi.org/10.59436/jsiane.351.2583-2093

Similar Articles

1-10 of 106

You may also start an advanced similarity search for this article.