A Review on Sleep cycle effect on human body

Authors

  • Manya Arora Department of Zoology, N.R.E.C. College, Khurja, Bulandshahr, Affiliated to Chaudhary Charan Singh University, Meerut, Uttar Pradesh, India
  • Neelam Department of Zoology, N.R.E.C. College, Khurja, Bulandshahr. Affiliated to Chaudhary Charan Singh University, Meerut, Uttar Pradesh, India
  • Anil Kumar Department of Zoology, N.R.E.C. College, Khurja, Bulandshahr. Affiliated to Chaudhary Charan Singh University, Meerut, Uttar Pradesh, India
  • Hridayesh Arya Department of Zoology, N.R.E.C. College, Khurja, Bulandshahr. Affiliated to Chaudhary Charan Singh University, Meerut, Uttar Pradesh, India

DOI:

https://doi.org/10.59436/jsiane.424.2583-2093

Keywords:

Circadian rhythm, work-rest patterns, sleep behaviour, sleep disorders, sleep homeostasis, wakefulness.

Abstract

Insufficient or poor sleep can cause a host of physical and mental health issues; this review looks at the science behind the human sleep cycle and how it works. Sleep is regulated by a dynamic interaction between circadian rhythms and sleep homeostasis.  Melatonin, a hormone secreted by the pineal gland, plays a crucial role in controlling when we sleep and when we wake up. A small cluster of hypothalamic neurons known as the suprachiasmatic nucleus (SCN) controls its secretion and acts as the body's primary timekeeper.  In response to light signals received by the eyes, the SCN synchronizes internal rhythms with the external day-night cycle. During the night, your body goes through two main phases of sleep: rapid eye movement (REM) and non-rapid eye movement (NREM).  The brainstem and forebrain's neural networks orchestrate the changes between these phases.  Cry1, Cry2, Per1, and Per2 are important clock genes whose expression regulates molecular circadian rhythms.  Extended periods of waking raise sleep pressure, which impairs cognition and increases energy expenditure. Sleep homeostasis can be upset by aging and irregular sleep habits, which can lead to structural changes in sleep patterns and decreased sleep efficiency. Shift workers are most affected by these interruptions because their internal clocks frequently don't match their work schedules. Circadian rhythm sleep-wake disorders (CRSWDs), which have a detrimental impact on health and quality of life, are exacerbated by this misalignment. Addressing sleep-related health issues in contemporary culture requires an understanding of these mechanisms.

References

Anaclet, C., Parmentier, R., Ouk, K., Guidon, G., Buda, C., Sastre, J. P., et al. (2009). Orexin/hypocretin and histamine: distinct roles in the control of wakefulness demonstrated using knock-out mouse models. J Neurosci, 29(46), 14423–14438.

Archer, S. N., Laing, E. E., Möller-Levet, C. S., van der Veen, D. R., Bucca, G., Lazar, A. S., et al. (2014). Mistimed sleep disrupts circadian regulation of the human transcriptome. Proc Natl Acad Sci U S A, 111(6), E682–E693.

Baburina, Y., Lomovsky, A., & Krestinina, O. (2021). Melatonin as a potential multitherapeutic agent. J Pers Med, 11(4), 274.

Belle, M. D. C., & Diekman, C. O. (2018). Neuronal oscillations on an ultra-slow timescale: daily rhythms in electrical activity and gene expression in the mammalian master circadian clockwork. Eur J Neurosci, 48(8), 2696–2717.

Benloucif, S., Guico, M. J., Reid, K. J., Wolfe, L. F., L'Hermite-Baleriaux, M., & Zee, P. C. (2005). Stability of melatonin and temperature as circadian phase markers and their relation to sleep times in humans. Journal of Biological Rhythms, 20, 178–188.

Benington, J. H., & Heller, H. C. (1995). Restoration of brain energy metabolism as the function of sleep. Prog Neurobiol, 45(4), 347–363.

Borrmann, H., McKeating, J. A., & Zhuang, X. (2021). The circadian clock and viral infections. J Biol Rhythms, 36(1), 9–22.

Borbély, A. A., Daan, S., Wirz-Justice, A., & Deboer, T. (2016). The two-process model of sleep regulation: a reappraisal. J Sleep Res, 25(2), 131–146.

Brown, R. E., Basheer, R., McKenna, J. T., Strecker, R. E., & McCarley, R. W. (2012). Control of sleep and wakefulness. Physiol Rev, 92(3), 1087–1187.

Cardinali, D. P. (2021). Melatonin and healthy aging. Vitam Horm, 115, 67–88.

Carskadon, M. A., & Dement, W. C. (2011). Normal human sleep: An overview. In M. H. Kryger, T. Roth, & W. C. Dement (Eds.), Principles and Practice of Sleep Medicine (5th ed., pp. 16–26). St. Louis, MO: Elsevier Saunders.

Caylak, E. (2009). The genetics of sleep disorders in humans: narcolepsy, restless legs syndrome, and obstructive sleep apnea syndrome. Am J Med Genet A, 149A(11), 2612–2626.

Chemelli, R. M., Willie, J. T., Sinton, C. M., Elmquist, J. K., Scammell, T., Lee, C., et al. (1999). Narcolepsy in orexin knockout mice: molecular genetics of sleep regulation. Cell, 98(4), 437–451.

Chong, S. Y. C., Xin, L., Ptáček, L. J., & Fu, Y. H. (2018). Disorders of sleep and circadian rhythms. In Handb Clin Neurol (Vol. 148, pp. 531–538).

Claustrat, B., & Leston, J. (2015). Melatonin: physiological effects in humans. Neurochirurgie, 61(23), 77–84.

Colin-Gonzalez, A. L., Aguilera, G., Serratos, I. N., Escribano, B. M., Santamaria, A., & Tunez, I. (2015). On the relationship between the light/dark cycle, melatonin and oxidative stress. Curr Pharm Des, 21(24), 3477–3488.

Colten, H. R., Altevogt, B. M., & Institute of Medicine (US) Committee on Sleep Medicine and Research (Eds.). (2006). Sleep disorders and sleep deprivation: An unmet public health problem. Washington (DC): National Academies Press (US).

Czeisler, C. A., Weitzman, E. D., Moore-Ede, M. C., et al. (1980). Human sleep: Its duration and organization depend on its circadian phase. Science, 210, 1264–1267.

Czeisler, C. A., Zimmerman, J. C., Ronda, J. M., et al. (1980). Timing of REM sleep is coupled to the circadian rhythm of body temperature in man. Sleep, 2, 329–346.

Dagan, Y., & Eisenstein, M. (1999). Circadian rhythm sleep disorders: toward a more precise definition and diagnosis. Chronobiol Int, 16, 213–222.

de la Iglesia, H. O., Fernandez-Duque, E., Golombek, D. A., et al. (2015). Access to electric light is associated with shorter sleep duration in a traditionally hunter-gatherer community. J Biol Rhythms, 30(4), 342–350.

Dijk, D. J., & Czeisler, C. A. (1995). Contribution of the circadian pacemaker and the sleep homeostat to sleep propensity, sleep structure, electroencephalographic slow waves, and sleep spindle activity in humans. J Neurosci, 15(5), 3526–3538.

Ekirch, A. R. (2001). Sleep we have lost: Pre-industrial slumber in the British Isles. American Historical Review, 106(2), 343–386.

Fuller, P. M., Gooley, J. J., & Saper, C. B. (2006). Neurobiology of the sleep-wake cycle: Sleep architecture, circadian regulation, and regulatory feedback. J Biol Rhythms, 21(6), 482–493.

Goel, N., Rao, H., Durmer, J. S., & Dinges, D. F. (2009). Neurocognitive consequences of sleep deprivation. Seminars in Neurology.

Gyorik, D., Eszlari, N., Gal, Z., Gal, Z., Torok, D., Baksa, D., et al. (2021). Every night and every morn: Effect of variation in CLOCK gene on depression depends on exposure to early and recent stress. Front Psychiatry, 12, 687487.

Hirano, A., Hsu, P. K., Zhang, L., Xing, L., McMahon, T., Yamazaki, M., et al. (2018). DEC2 modulates orexin expression and regulates sleep. Proc Natl Acad Sci U S A, 115(13), 3434–3439.

Hirshkowitz, M., Whiton, K., Albert, S. M., et al. (2015). National Sleep Foundation’s sleep time duration recommendations: Methodology and results summary. Sleep Health, 1(1), 40–43.

Huang, Z. L., Zhang, Z., & Qu, W. M. (2014). Roles of adenosine and its receptors in sleep-wake regulation. Int Rev Neurobiol, 119, 349–371.

Jin, Y., Choi, Y. J., Heo, K., & Park, S. J. (2021). Melatonin as an oncostatic molecule based on its anti-aromatase role in breast cancer. Int J Mol Sci, 22(1), 438.

Kalinchuk, A. V., Lu, Y., Stenberg, D., Rosenberg, P. A., & Porkka-Heiskanen, T. (2006). Nitric oxide production in the basal forebrain is required for recovery sleep. J Neurochem, 99(2), 483–493.

Kalinchuk, A. V., Stenberg, D., Rosenberg, P. A., & Porkka-Heiskanen, T. (2006). Inducible and neuronal nitric oxide synthases (NOS) have complementary roles in recovery sleep induction. Eur J Neurosci, 24(5), 1443–1456.

Karacan, I., & Moore, C. A. (1979). Genetics and human sleep. Psychiatr Ann, 9, 11–23.

Kelly, R. M., Healy, U., Sreenan, S., McDermott, J. H., & Coogan, A. N. (2018). Clocks in the clinic: Circadian rhythms in health and disease. Postgrad Med J, 94(1117), 653–658.

Kervezee, L., Cuesta, M., Cermakian, N., & Boivin, D. B. (2014). Simulated nightshift work induces circadian misalignment of the human peripheral.

Kinoshita, C., Okamoto, Y., Aoyama, K., & Nakaki, T. (2020). MicroRNA: A key player for the interplay of circadian rhythm abnormalities, sleep disorders and neurodegenerative diseases. Clocks Sleep, 2(3), 282–307.

Kurhaluk, N. (2021). Alcohol and melatonin. Chronobiol Int, 38(6), 785–800.

Landolt, H. P. (2008). Sleep homeostasis: A role for adenosine in humans? Biochem Pharmacol, 75(11), 2070–2079

Lee, C., Etchegaray, J. P., Cagampang, F. R., Loudon, A. S., & Reppert, S. M. (2001). Posttranslational mechanisms regulate the mammalian circadian clock. Cell, 107(7), 855–867.

Lee, E. E., Amritwar, A., Hong, L. E., Mohyuddin, I., Brown, T., & Postolache, T. T. (2020). Daily and seasonal variation in light exposure among the old order Amish. Int J Environ Res Public Health, 17(12), 4460–4476.

Lloret, M. A., Cervera-Ferri, A., Nepomuceno, M., Monllor, P., Esteve, D., & Lloret, A. (2020). Is sleep disruption a cause or consequence of Alzheimer’s disease? Reviewing its possible role as a biomarker. Int J Mol Sci, 21(3), 1168.

Lockley, S. W., Barger, L. K., Ayas, N. T., Rothschild, J. M., Czeisler, C. A., & Landrigan, C. P. (2007). Effects of health care provider work hours and sleep deprivation on safety and performance. Joint Commission J Qual Patient Saf, 33(11), 7–18.

McCarley, R. W. (2007). Neurobiology of REM and NREM sleep. Sleep Med, 8(4), 302–330.

Medic, G., Wille, M., & Hemels, M. E. (2017). Short- and long-term health consequences of sleep disruption. Nat Sci Sleep, 9, 151.

Meijer, J. H., & Schwartz, W. J. (2003). In search of the pathways for light-induced pacemaker resetting in the suprachiasmatic nucleus. J Biol Rhythms, 18(3), 235–249.

Miller, D. B., & O’Callaghan, J. P. (2006). The pharmacology of wakefulness. Metabolism, 55(10 Suppl 2), S13–S19.

Möller-Levet, C. S., et al. (2014). Mistimed sleep disrupts circadian regulation of the human transcriptome. PNAS, 111(6), E682–E691.

Moloudizargari, M., Moradkhani, F., Hekmatirad, S., Fallah, M., Asghari, M. H., & Reiter, R. J. (2021). Therapeutic targets of cancer drugs: Modulation by melatonin. Life Sci, 267, 118934.

Moore, R. Y., & Eichler, V. B. (1972). Loss of a circadian adrenal corticosterone rhythm following suprachiasmatic lesions in the rat. Brain Res, 42(1), 201–206.

Nayak, S. K., Jegla, T., & Panda, S. (2007). Role of a novel photopigment, melanopsin, in behavioral adaptation to light. Cellular and Molecular Life Sciences, 64(2), 144–154.

Nishimon, S., Nishino, N., & Nishino, S. (2021). Advances in the pharmacological management of non-24-h sleep-wake disorder. Expert Opin Pharmacother, 22(8), 1039–1049.

Oishi, A., Gbahou, F., & Jockers, R. (2021). Melatonin receptors, brain functions, and therapies. Handb Clin Neurol, 179, 345–356.

Oishi, Y., & Lazarus, M. (2017). The control of sleep and wakefulness by mesolimbic dopamine systems. Neurosci Res, 118, 66–73.

Ohdo, S. (2010). Chronotherapeutic strategy: Rhythm monitoring, manipulation and disruption. Adv Drug Deliv Rev, 62(9–10), 859–875.

Ono, D., & Yamanaka, A. (2017). Hypothalamic regulation of the sleep/wake cycle. Neurosci Res, 118, 74–81.

Panda, S., Hogenesch, J. B., & Kay, S. A. (2002). Circadian rhythms from flies to human. Nature, 417(6886), 329–335.

Pandi-Perumal, S. R., BaHammam, A. S., Brown, G. M., Spence, D. W., Bharti, V. K., Kaur, C., et al. (2013). Melatonin antioxidative defense: Therapeutical implications for aging and neurodegenerative processes. Neurotox Res, 23(3), 267–300.

Pace-Schott, E. F., & Hobson, J. A. (2002). The neurobiology of sleep: Genetics, cellular physiology and subcortical networks. Nat Rev Neurosci, 3(8), 591–605.

Peng, W., Wu, Z., Song, K., Zhang, S., Li, Y., & Xu, M. (2020). Regulation of sleep homeostasis mediator adenosine by basal forebrain glutamatergic neurons. Science, 369(6508), eabb0556.

Pitsillou, E., Liang, J., Hung, A., & Karagiannis, T. C. (2021). The circadian machinery links metabolic disorders and depression: A review of pathways, proteins and potential pharmacological interventions. Life Sci, 265, 118809.

Ramirez, A. V. G., Filho, D. R., & de Sá, L. B. P. C. (2021). Melatonin and its relationships with diabetes and obesity: A literature review. Curr Diabetes Rev, 17(7), e072620184137.

Rechtschaffen, A., & Kales, A. (Eds.). (1968). A manual of standardized terminology, techniques and scoring system for sleep stages of human subjects. Los Angeles: UCLA Brain Information Service/Brain Research Institute.

Reddy, S., Reddy, V., & Sharma, S. (2021). Physiology, circadian rhythm. In StatPearls. Treasure Island (FL): StatPearls Publishing.

Ruan, W., Yuan, X., & Eltzschig, H. K. (2021). Circadian rhythm as a therapeutic target. Nat Rev Drug Discov, 20(4), 287–307.

Rytkönen, K. M., Wigren, H. K., Kostin, A., Porkka-Heiskanen, T., & Kalinchuk, A. V. (2010). Nitric oxide mediated recovery sleep is attenuated with aging. Neurobiol Aging, 31(11), 2011–2019.

Schwartz, J. R., & Roth, T. (2008). Neurophysiology of sleep and wakefulness: Basic science and clinical implications. Curr Neuropharmacol, 6(4), 367–378.

Spiegel, K., Sheridan, J. F., & Van Cauter, E. (2002). Effect of sleep deprivation on response to immunization. JAMA, 288(12), 1471–1472.

Strogatz, S. H. (1986). The mathematical structure of the human sleep-wake cycle. New York: Springer-Verlag.

Taheri, S., & Mignot, E. (2002). The genetics of sleep disorders. Lancet Neurol, 1(4), 242–251.

Takahashi, K., Lin, J. S., & Sakai, K. (2006). Neuronal activity of histaminergic tuberomammillary neurons during wake-sleep states in the mouse. J Neurosci, 26(40), 10292–10298.

Tamaru, T., & Takamatsu, K. (2018). Circadian modification network of a core clock driver BMAL1 to harmonize physiology from brain to peripheral tissues. Neurochem Int, 119, 11–16.

Tamanini, F., Yagita, K., Okamura, H., & van der Horst, G. T. (2005). Nucleocytoplasmic shuttling of clock proteins. Methods Enzymol, 393, 418–435.

The International Classification of Sleep Disorders: Diagnostic and Coding Manual. (2005). 2nd ed. Westchester, IL: American Academy of Sleep Medicine.

Travnickova-Bendova, Z., Cermakian, N., Reppert, S. M., & Sassone-Corsi, P. (2002). Bimodal regulation of mPer1 gene expression by CREB and CLOCK/BMAL1: A basis for circadian transcription. PNAS, 99(11), 7728–7733.

Vyazovskiy, V. V., Olcese, U., Lazimy, Y. M., Faraguna, U., Esser, S. K., Williams, J. C., et al. (2009). Cortical firing and sleep homeostasis. Neuron, 63(6), 865–878.

Webb, W. B., & Dinges, D. F. (1989). Cultural perspectives on napping and the siesta. In Sleep Alertness (pp. 247–265).

Weitzman, E. D., Czeisler, C. A., Zimmerman, J. C., et al. (1980). Timing of REM and stages 3 + 4 sleep during temporal isolation in man. Sleep, 2, 391–407.

Welsh, D. K., Takahashi, J. S., & Kay, S. A. (2010). Suprachiasmatic nucleus: Cell autonomy and network properties. Annu Rev Physiol, 72, 551–577.

Wigren, H. K., Rytkönen, K. M., & Porkka-Heiskanen, T. (2009). Basal forebrain lactate release and promotion of cortical arousal during prolonged waking is attenuated in aging. J Neurosci, 29(37), 11698–11707.

Wigren, H. K., Schepens, M., Matto, V., Stenberg, D., & Porkka-Heiskanen, T. (2007). Glutamatergic stimulation of the basal forebrain elevates extracellular adenosine and increases the subsequent sleep. Neuroscience, 147(3), 811–823.

Xu, Y., Toh, K. L., Jones, C. R., Shin, J. Y., Fu, Y. H., & Ptáček, L. J. (2007). Modeling of a human circadian mutation yields insights into clock regulation by PER2. Cell, 128(1), 59–70.

Yetish, G., Kaplan, H., Gurven, M., et al. (2015). Natural sleep and its seasonal variations in three pre-industrial societies. Curr Biol, 25(21), 2862–2868.

Yoo, S. H., Yamazaki, S., Lowrey, P. L., Shimomura, K., Ko, C. H., Buhr, E. D., et al. (2004). PERIOD2::LUCIFERASE real-time reporting of circadian dynamics reveals persistent circadian oscillations in mouse peripheral tissues. PNAS, 101(15), 5339–5346.

Yu, X., Li, W., Ma, Y., Tossell, K., Harris, J. J., Harding, E. C., et al. (2019). GABA and glutamate neurons in the VTA regulate sleep and wakefulness. Nat Neurosci, 22(1), 106–119.

Zant, J. C., Rozov, S., Wigren, H. K., Panula, P., & Porkka-Heiskanen, T. (2012). Histamine release in the basal forebrain mediates cortical activation through cholinergic neurons. J Neurosci, 32(38), 13244–13254.

Zulley, J. (1980). Distribution of REM sleep in entrained 24-hour and free-running sleep-wake cycles. Sleep, 2, 377–389.

Zulley, J., Wever, R., & Aschoff, J. (1981). The dependence of onset and duration of sleep on the circadian rhythm of rectal temperature. Pflugers Arch, 391, 314–318.

Published

2025-06-20

How to Cite

A Review on Sleep cycle effect on human body. (2025). Journal of Science Innovations and Nature of Earth, 5(2), 108-112. https://doi.org/10.59436/jsiane.424.2583-2093

Similar Articles

1-10 of 38

You may also start an advanced similarity search for this article.

Most read articles by the same author(s)

<< < 1 2