A review of toxicological effects of heavy metals on Clarias batrachus

Authors

  • Ashmeera Khan Department of Zoology, N.R.E.C. College, Khurja, Bulandshahr, Affiliated to Chaudhary Charan Singh University, Meerut, Uttar Pradesh, India
  • Anil Kumar Department of Zoology, N.R.E.C. College, Khurja, Bulandshahr, Affiliated to Chaudhary Charan Singh University, Meerut, Uttar Pradesh, India
  • Neelam Department of Zoology, N.R.E.C. College, Khurja, Bulandshahr. Affiliated to Chaudhary Charan Singh University, Meerut, Uttar Pradesh, India
  • Vishan Kumar Department of Zoology, N.R.E.C. College, Khurja, Bulandshahr. Affiliated to Chaudhary Charan Singh University, Meerut, Uttar Pradesh, India
  • Hridayesh Arya Department of Zoology, N.R.E.C. College, Khurja, Bulandshahr. Affiliated to Chaudhary Charan Singh University, Meerut, Uttar Pradesh, India

DOI:

https://doi.org/10.59436/jsiane.417.2583-2093

Keywords:

Heavy metals, Clarias batrachus, toxicological effects

Abstract

Mo, Cu, Ni, Fe, and Zn are essential heavy metals, whereas Cd, Ni, As, Hg, and Pb are non-essential heavy metals.  In humans, essential metals like copper play a key role in regulating metabolism, including the production of hemoglobin and the breakdown of carbohydrates.  On the other hand, cells might be damaged by their presence in excess.  Heavy metals serve similar purposes in plants, activating enzymes, providing cellular conductivity and ductility, and stabilizing intracellular cations. Some metals are toxic when present in high enough concentrations.  Negative effects on human health and decreased agricultural production are associated with essential heavy metal shortages.  Even in trace amounts, non-essential metals can cause harm due to their toxic effects.  They don't break down or transform into other molecules in the environment's intermediate state.  Natural processes such as rock weathering and volcanic eruptions aren't the only ways heavy metals can seep into ecosystems; human activities in the home, workplace, farm, and hospital also contribute.  Dangerous, non-biodegradable, and persistent, these metals are everywhere.  To put it simply, they wreak havoc on living things.  The introduction of heavy metals into the environment sets in motion a cascade of contamination that impacts numerous sectors, including agriculture, urban areas, drinking water, and people's health.  Breathing catfish are members of the genus Clarias of the order Siluriformes and the family Clariidae.  Because of its ability to go for long periods of time without water, this fish is named after the Greek word for "live," *chlaros*.  The genus extends westward to Asia Minor and India, in addition to Southeast Asia, East Asia, Africa, and South and Southeast Asia.  In terms of variety, these catfishes are most abundant in Africa. 

References

Abdel-Baki, A. S., Dkhil, M. A., & Al-Quraishy, S. (2011). Bioaccumulation of some heavy metals in tilapia fish relevant to their concentration in water and sediment of Wadi Hanifah, Saudi Arabia. African Journal of Biotechnology, 10(13), 2541–2547.

Agency for Toxic Substances and Disease Registry (ATSDR). (2000). Toxicological profile for manganese. U.S. Department of Health and Human Services, Public Health Service.

Ahmed, M. K., Habibullah-Al-Mamun, M., Parvin, E., Akter, M. S., & Khan, M. S. (2013). Arsenic-induced toxicity and histopathological changes in gill and liver tissue of freshwater fish, tilapia (Oreochromis mossambicus). Experimental and Toxicologic Pathology, 65(6), 903–909. https://doi.org/10.1016/j.etp.2012.12.002.

Akter, S., Jahan, N., Rohani, M. F., Akter, Y., & Shahjahan, M. (2021). Chromium supplementation in diet enhances growth and feed utilization of striped catfish (Pangasianodon hypophthalmus). Biological Trace Element Research, 199, 4811–4819. https://doi.org/10.1007/s12011-020-02454-4.

Albel, P. D. (1998). Water pollution biology. Taylor & Francis Ltd.

Ando, H., Ogawa, S., Shahjahan, M., Ikegami, T., Doi, H., Hattori, A., & Parhar, I. S. (2014). Diurnal and circadian oscillations in expression of kisspeptin, kisspeptin receptor and gonadotrophin-releasing hormone 2 genes in the grass puffer, a semilunar-synchronised spawner. Journal of Neuroendocrinology, 26(6), 459–467. https://doi.org/10.1111/jne.12161.

Ando, H., Shahjahan, M., & Hattori, A. (2013). Molecular neuroendocrine basis of lunar-related spawning in grass puffer. General and Comparative Endocrinology, 181, 211–214. https://doi.org/10.1016/j.ygcen.2012.11.013.

Ando, H., Shahjahan, M., & Kitahashi, T. (2018). Periodic regulation of expression of genes for kisspeptin, gonadotropin-inhibitory hormone and their receptors in the grass puffer: Implications in seasonal, daily and lunar rhythms of reproduction. General and Comparative Endocrinology, 265, 149–153. https://doi.org/10.1016/j.ygcen.2018.03.011.

Asad, F., Mubarik, M. S., Ali, T., Zahoor, M. K., Ashrad, R., & Qamer, S. (2019). Effect of organic and inorganic chromium supplementation on growth performance and genotoxicity of Labeo rohita. Saudi Journal of Biological Sciences, 26(6), 1140–1145. https://doi.org/10.1016/j.sjbs.2018.05.010.

Asad, F., Mubarik, M. S., Ali, T., Zahoor, M. K., Ashrad, R., & Qamer, S. (2019). Effect of organic and inorganic chromium supplementation on growth performance and genotoxicity of Labeo rohita. Saudi Journal of Biological Sciences, 26(6), 1140–1145. https://doi.org/10.1016/j.sjbs.2018.05.010.

Ashaf-Ud-Doulah, M., Islam, S. M. M., Zahangir, M. M., Islam, M. S., Brown, C., & Shahjahan, M. (2021). Increased water temperature interrupts embryonic and larval development of Indian major carp rohu (Labeo rohita). Aquaculture International, 29, 711–722. https://doi.org/10.1007/s10499-021-00658-2.

Aslam, S., & Yousafzai, A. M. (2017). Chromium toxicity in fish: A review article. Journal of Entomology and Zoology Studies, 5(6), 1483–1488.

Bader, J. L., Gonzalez, G., Goodell, P., Ali, A. M., & Pillai, S. (1999). Aerobic reduction of hexavalent chromium in soil by indigenous microorganisms. Bioremediation Journal, 3(3), 201–212. https://doi.org/10.1080/10889869991219333. (Add or verify DOI if available)

Bennet, W. A., Sosa, A., & Britinger, T. L. (1995). Oxygen tolerance of fathead minnow previously exposed to copper. Bulletin of Environmental Contamination and Toxicology, 55(4), 517–524. https://doi.org/10.1007/BF00206911. (Add or verify DOI if available)

Bharathi, P., Govindaraju, M., Palaniswamy, A. P., Sambamurti, K., & Rao, K. S. J. (2008). Molecular toxicity of aluminium in relation to neurodegeneration. Indian Journal of Medical Research, 128(5), 545–556.

Bopp, L. H., & Ehrlich, H. L. (1988). Chromate resistance and reduction in Pseudomonas fluorescens strain LB300. Archives of Microbiology, 150(5), 426–431. https://doi.org/10.1007/BF00408328. (Add or verify DOI if needed)

Boyle, D., Brix, K. V., Amlund, H., Lundebye, A. K., Hogstrand, C., & Bury, N. R. (2008). Natural arsenic-contaminated diets perturb reproduction in fish. Environmental Science & Technology, 42(14), 5354–5360. https://doi.org/10.1021/es8000212.

Boyle, D., Brix, K. V., Amlund, H., Lundebye, A. K., Hogstrand, C., & Bury, N. R. (2008). Natural arsenic contaminated diets perturb reproduction in fish. Environmental Science & Technology, 42(14), 5354–5360. https://doi.org/10.1021/es800074w.

Cao, L., Huang, W., Shan, X., Xiao, Z., Wang, Q., & Dou, S. (2009). Cadmium toxicity to embryonic–larval development and survival in red sea bream (Pagrus major). Ecotoxicology and Environmental Safety, 72(7), 1966–1974. https://doi.org/10.1016/j.ecoenv.2009.06.014.

Cao, L., Huang, W., Shan, X., Xiao, Z., Wang, Q., & Dou, S. (2009). Cadmium toxicity to embryonic–larval development and survival in red sea bream (Pagrus major). Ecotoxicology and Environmental Safety, 72(7), 1966–1974. https://doi.org/10.1016/j.ecoenv.2009.06.014.

Celino, F. T., Yamaguchi, S., Miura, C., & Miura, T. (2009). Arsenic inhibits in vitro spermatogenesis and induces germ cell apoptosis in Japanese eel (Anguilla japonica). Reproduction, 138(2), 279–287. https://doi.org/10.1530/REP-09-0067.

Celino, F. T., Yamaguchi, S., Miura, C., & Miura, T. (2009). Arsenic inhibits in vitro spermatogenesis and induces germ cell apoptosis in Japanese eel (Anguilla japonica). Reproduction, 138(2), 279–287. https://doi.org/10.1530/REP-09-0100.

Chandra, S., & Banerjee, T. K. (2003). Histopathological analysis of the respiratory organs of the air-breathing catfish Clarias batrachus (Linn.) exposed to the air. Acta Zoologica Taiwanica, 14(1), 45–64.

Chang, L. W. (1996). Toxicology of metals. CRC Press Inc., Lewis Publishers.

Cifuentes, F. R., Lindemann, W. C., & Barton, L. L. (1996). Chromium sorption and reduction in soil with implications to bioremediation. Soil Science, 161(4), 233–241. https://doi.org/10.1097/00010694-199604000-00004. (Add or verify DOI if available)

Crichton, R. R. (1991). Inorganic biochemistry of iron metabolism. Ellis Horwood Limited.

Debnath, S. (2011). Clarias batrachus, the medicinal fish: An excellent candidate for aquaculture and employment generation. In Proceedings of the International Conference on Asia Agriculture and Animal (Vol. 13, pp. 2005–2010).

Dietrich, G. J., Ciereszko, A., Kowalski, R. K., Rzemieniecki, A., Bogdan, E., Demianowicz, W., Dietrich, M., Kujawa, R., & Glogowski, J. (2012). Motility and fertilizing capacity of frozen/thawed sperm of Siberian sturgeon after a short-time exposure of fresh semen to mercury and cadmium. Journal of Applied Ichthyology, 28(6), 973–977. https://doi.org/10.1111/jai.12089.

Dietrich, G. J., Dietrich, M., Kowalski, R. K., Dobosz, S., Karol, H., Demianowicz, W., & Glogowski, J. (2010). Exposure of rainbow trout milt to mercury and cadmium alters sperm motility parameters and reproductive success. Aquatic Toxicology, 97(4), 277–284. https://doi.org/10.1016/j.aquatox.2009.12.008.

Do Carmo, M. V., Sá, E., Pezzato, L. E., Ferreira Lima, M. M. B., & De Magalhães Padilha, P. (2004). Optimum zinc supplementation level in Nile tilapia Oreochromis niloticus juveniles diets. Aquaculture, 238(1–4), 385–401. https://doi.org/10.1016/j.aquaculture.2004.05.037.

Eckerich, C., Fackelmayer, F. O., & Knippers, R. (2001). Zinc affects the conformation of nucleoprotein filaments formed by replication protein A (RPA) and long natural DNA molecules. Biochimica et Biophysica Acta (BBA) - Gene Structure and Expression, 1538(1), 67–75. https://doi.org/10.1016/S0167-4781(01)00214-2.

El-Greisy, Z. A., & El-Gamal, A. H. A. (2015). Experimental studies on the effect of cadmium chloride, zinc acetate, their mixture and the mitigation with vitamin C supplementation on hatchability, size and quality of newly hatched larvae of common carp, Cyprinus carpio. Egyptian Journal of Aquatic Research, 41(3), 219–226. https://doi.org/10.1016/j.ejar.2015.06.003.

Ezemonye, L. I., Adebayo, P. O., Enuneku, A. A., Tongo, I., & Ogbomida, E. (2019). Potential health risk consequences of heavy metal concentrations in surface water, shrimp (Macrobrachium macrobrachion), and fish (Brycinus longipinnis) from Benin River, Nigeria. Toxicology Reports, 6, 1–9. https://doi.org/10.1016/j.toxrep.2018.11.002.

Fernandes, C., Fontaínhas-Fernandes, A., Cabral, D., & Salgado, M. A. (2008). Heavy metals in water, sediment and tissues of Liza saliens from Esmoriz-Paramos lagoon, Portugal. Environmental Monitoring and Assessment, 136(1–3), 267–275. https://doi.org/10.1007/s10661-007-9678-5.

Fingerman, M., Devi, M., Reddy, P. S., & Katyayani, R. (1996). Impact of heavy metal exposure on the nervous system and endocrine-mediated processes in crustaceans. Zoological Studies, 35(1), 1–8.

Forouhar Vajargah, M., Mohamadi Yalsuyi, A., Sattari, M., Prokić, M. D., & Faggio, C. (2020). Effects of copper oxide nanoparticles (CuO-NPs) on parturition time, survival rate and reproductive success of guppy fish (Poecilia reticulata). Journal of Cluster Science, 31(2), 499–506. https://doi.org/10.1007/s10876-019-01671-2.

Froese, R., & Pauly, D. (Eds.). (2011, December). Species in genus Clarias. FishBase. http://www.fishbase.org

Garbisu, C., Alkorta, I., Llama, M. J., & Serra, J. L. (1998). Aerobic chromate reduction by Bacillus subtilis. Biodegradation, 9(2), 133–141. https://doi.org/10.1023/A:1008358721853. (Add or verify DOI if available)

Garriz, Á., & Miranda, L. A. (2020). Effects of metals on sperm quality, fertilization and hatching rates, and embryo and larval survival of pejerrey fish (Odontesthes bonariensis). Ecotoxicology, 29(8), 1072–1082. https://doi.org/10.1007/s10646-020-02244-9.

Garriz, Á., & Miranda, L. A. (2020). Effects of metals on sperm quality, fertilization and hatching rates, and embryo and larval survival of pejerrey fish (Odontesthes bonariensis). Ecotoxicology, 29(8), 1072–1082. https://doi.org/10.1007/s10646-020-02244-9.

Garriz, Á., del Fresno, P. S., Carriquiriborde, P., & Miranda, L. A. (2019). Effects of heavy metals identified in Chascomús shallow lake on the endocrine-reproductive axis of pejerrey fish (Odontesthes bonariensis). General and Comparative Endocrinology, 273, 152–162. https://doi.org/10.1016/j.ygcen.2018.12.013.

Garriz, Á., del Fresno, P. S., Carriquiriborde, P., & Miranda, L. A. (2019). Effects of heavy metals identified in Chascomús shallow lake on the endocrine-reproductive axis of pejerrey fish (Odontesthes bonariensis). General and Comparative Endocrinology, 273, 152–162. https://doi.org/10.1016/j.ygcen.2018.11.009.

Günther, A. C. L. G. (1880). An introduction to the study of fishes. Today and Tomorrow's Book Agency.

Gupta, G., Srivastava, P. P., Kumar, M., Varghese, T., Chanu, T. I., Gupta, S., Ande, M. P., & Jana, P. (2021). The modulation effects of dietary zinc on reproductive performance and gonadotropins (FSH and LH) expression in threatened Asian catfish, Clarias magur (Hamilton, 1822) broodfish. Aquaculture Research, 52(6), 2254–2265. https://doi.org/10.1111/are.15061.

Hayati, A., Giarti, K., Winarsih, Y., & Amin, M. H. F. (2017). The effect of cadmium on sperm quality and fertilization of Cyprinus carpio L. Journal of Tropical Biodiversity and Biotechnology, 2(2), 45–51. https://doi.org/10.22146/jtbb.29260.

Holmes, A. L., Wise, S. S., & Wise, J. P., Sr. (2008). Carcinogenicity of hexavalent chromium. Indian Journal of Medical Research, 128(3), 353–372.

Huang, W., Cao, L., Shan, X., Xiao, Z., Wang, Q., & Dou, S. (2010). Toxic effects of zinc on the development, growth, and survival of red sea bream (Pagrus major) embryos and larvae. Archives of Environmental Contamination and Toxicology, 58(1), 140–150. https://doi.org/10.1007/s00244-009-9341-4.

Huang, W., Cao, L., Shan, X., Xiao, Z., Wang, Q., & Dou, S. (2010). Toxic effects of zinc on the development, growth, and survival of red sea bream Pagrus major embryos and larvae. Archives of Environmental Contamination and Toxicology, 58(1), 140–150. https://doi.org/10.1007/s00244-009-9351-1.

Islam, S. M. M., Rahman, M. A., Nahar, S., Uddin, M. H., Haque, M. M., & Shahjahan, M. (2019). Acute toxicity of an organophosphate insecticide sumithion to striped catfish Pangasianodon hypophthalmus. Toxicology Reports, 6, 957–962. https://doi.org/10.1016/j.toxrep.2019.09.003.

Islam, S. M. M., Rohani, M. F., & Shahjahan, M. (2021). Probiotic yeast enhances growth performance of Nile tilapia (Oreochromis niloticus) through morphological modifications of intestine. Aquaculture Reports, 21, 100800. https://doi.org/10.1016/j.aqrep.2021.100800.

Islam, S. M. M., Rohani, M. F., Zabed, S. A., Islam, M. T., Jannat, R., Akter, Y., & Shahjahan, M. (2020). Acute effects of chromium on hemato-biochemical parameters and morphology of erythrocytes in striped catfish Pangasianodon hypophthalmus. Toxicology Reports, 7, 664–670. https://doi.org/10.1016/j.toxrep.2020.04.002.

Islam, S. M. M., Rohani, M. F., Zabed, S. A., Islam, M. T., Jannat, R., Akter, Y., & Shahjahan, M. (2020). Acute effects of chromium on hemato-biochemical parameters and morphology of erythrocytes in striped catfish Pangasianodon hypophthalmus. Toxicology Reports, 7, 664–670. https://doi.org/10.1016/j.toxrep.2020.04.002.

Jahan, N., Islam, S. M. M., Rohani, M. F., Hossain, M. T., & Shahjahan, M. (2021). Probiotic yeast enhances growth performance of rohu (Labeo rohita) through upgrading hematology, and intestinal microbiota and morphology. Aquaculture, 545, 737243. https://doi.org/10.1016/j.aquaculture.2021.737243.

Jezierska, B., Lugowska, K., Witeska, M., & Sarnowski, P. (2000). Malformations of newly hatched common carp larvae. Electronic Journal of Polish Agricultural Universities, 3(2). http://www.ejpau.media.pl/volume3/issue2/fisheries/art-02.html.

Johnson, A., Carew, E., & Sloman, K. A. (2007). The effects of copper on the morphological and functional development of zebrafish embryos. Aquatic Toxicology, 84(4), 431–438. https://doi.org/10.1016/j.aquatox.2007.07.001.

Johnson, A., Carew, E., & Sloman, K. A. (2007). The effects of copper on the morphological and functional development of zebrafish embryos. Aquatic Toxicology, 84(4), 431–438. https://doi.org/10.1016/j.aquatox.2007.07.001.

Kazlauskienė, N., & Vosylienė, M. Z. (2008). Characteristic features of the effect of Cu and Zn mixtures on rainbow trout Oncorhynchus mykiss in ontogenesis. Polish Journal of Environmental Studies, 17(2), 291–293.

Kazlauskienė, N., & Vosylienė, M. Z. (2008). Characteristic features of the effect of Cu and Zn mixtures on rainbow trout Oncorhynchus mykiss in ontogenesis. Polish Journal of Environmental Studies, 17(2), 291–293.

Kong, X., Jiang, H., Wang, S., Wu, X., Fei, W., Li, L., Nie, G., & Li, X. (2013). Effects of copper exposure on the hatching status and antioxidant defense at different developmental stages of embryos and larvae of goldfish Carassius auratus. Chemosphere, 92(11), 1458–1464. https://doi.org/10.1016/j.chemosphere.2013.03.030.

Króliczewska, B., Zawadzki, W., Skiba, T., & Miśta, D. (2005). Effects of chromium supplementation on chicken broiler growth and carcass characteristics. Acta Veterinaria Brno, 74(4), 543–549. https://doi.org/10.2754/avb200574040543.

Kucukbay, Z., Yazlak, H., Şahin, N., Tuzcu, M., Cakmak, M., Gurdogan, F., Juturu, V., & Sahin, K. (2006). Zinc picolinate decreases oxidative stress in rainbow trout Oncorhynchus mykiss. Aquaculture, 257(1–4), 465–469. https://doi.org/10.1016/j.aquaculture.2006.03.007.

Kucukbay, Z., Yazlak, H., Şahin, N., Tuzcu, M., Cakmak, M., Gurdogan, F., Juturu, V., & Sahin, K. (2006). Zinc picolinate decreases oxidative stress in rainbow trout Oncorhynchus mykiss. Aquaculture, 257(1–4), 465–469. https://doi.org/10.1016/j.aquaculture.2006.03.007.

Kumar, P., Patra, A. K., Ranjan, R., Patra, R. C., Swarup, D., & Singh, S. P. (2009). Ascorbic acid, garlic extract, and taurine alleviate cadmium-induced oxidative stress in freshwater catfish (Clarias batrachus). Science of the Total Environment, 407(16), 5024–5030. https://doi.org/10.1016/j.scitotenv.2009.05.022.

Kumar, P., Prasad, Y., Raikwar, M. K., Singh, M., & Sharma, A. K. (2006, December 12–14). Cadmium residues in the fish offals of Bareilly market region. In Proceedings of an International Conference held in Palampur (p. 114).

Larsson, A., Bengtsson, B. E., & Svanberg, O. (1976). Some haematological and biochemical effects of cadmium on fish. In A. P. M. Lockwood (Ed.), Effects of pollutants on aquatic organisms (pp. 34–45). Cambridge University Press.

Leonard, S. S., Marres, G. K., & Shi, X. L. (2004). Metal-induced oxidative stress and signal transduction. Free Radical Biology and Medicine, 37(12), 1921–1942. https://doi.org/10.1016/j.freeradbiomed.2004.09.010. (Add DOI if available)

Li, Z. H., Li, P., Dzyuba, B., & Randak, T. (2010). Influence of environmental related concentrations of heavy metals on motility parameters and antioxidant responses in sturgeon sperm. Chemico-Biological Interactions, 188(2), 473–477. https://doi.org/10.1016/j.cbi.2010.09.002.

Li, Z. H., Li, P., Dzyuba, B., & Randak, T. (2010). Influence of environmental related concentrations of heavy metals on motility parameters and antioxidant responses in sturgeon sperm. Chemico-Biological Interactions, 188(2), 473–477. https://doi.org/10.1016/j.cbi.2010.09.002.

(Note: This is a duplicate of reference 123.)

Liang, J.-J., Yang, H.-J., Liu, Y.-J., Tian, L.-X., & Liang, G.-Y. (2012). Dietary zinc requirement of juvenile grass carp (Ctenopharyngodon idella) based on growth and mineralization. Aquaculture Nutrition, 18(4), 380–387. https://doi.org/10.1111/j.1365-2095.2011.00899.x.

Lim, K. K. P., & Ng, H. H. (1999). Clarias batu, a new species of catfish (Teleostei: Clariidae) from Pulau Tioman, Peninsular Malaysia. The Raffles Bulletin of Zoology, (6), 157–167. Archived from the original (PDF) on June 6, 2011. Retrieved June 24, 2009, from [URL if available]

Liu, X. J., Luo, Z., Xiong, B. X., Liu, X., Zhao, Y. H., Hu, G. F., & Lv, G. J. (2010). Effect of waterborne copper exposure on growth, hepatic enzymatic activities and histology in Synechogobius hasta. Ecotoxicology and Environmental Safety, 73(7), 1286–1291. https://doi.org/10.1016/j.ecoenv.2010.06.007.

Livingstone, C. (2015). Zinc: Physiology, deficiency, and parenteral nutrition. Nutrition in Clinical Practice, 30(3), 371–382. https://doi.org/10.1177/0884533615580212.

Łuszczek-Trojnar, E., Drag-Kozak, E., Szczerbik, P., Socha, M., & Popek, W. (2014). Effect of long-term dietary lead exposure on some maturation and reproductive parameters of a female Prussian carp (Carassius gibelio B.). Environmental Science and Pollution Research, 21(4), 2465–2478. https://doi.org/10.1007/s11356-013-2148-7.

Mahmuda, M., Rahman, M. H., Bashar, A., Rohani, M. F., & Hossain, M. S. (2020). Heavy metal contamination in tilapia (Oreochromis niloticus) collected from different fish markets of Mymensingh District. Journal of Agriculture, Food and Environment, 1, 1–5.

Maret, W., & Krezel, A. (2007). Cellular zinc and redox buffering capacity of metallothionein/thionein in health and disease. Molecular Medicine, 13(7–8), 371–375. https://doi.org/10.2119/2007-00017.Maret.

Mhadhbi, L., Boumaiza, M., & Beiras, R. (2010). A standard ecotoxicological bioassay using early life stages of the marine fish Psetta maxima. Aquatic Living Resources, 23(2), 209–216. https://doi.org/10.1051/alr/2011003.

Mohseni, M., Pourkazemi, M., & Bai, S. C. (2014). Effects of dietary inorganic copper on growth performance and immune responses of juvenile beluga, Huso huso. Aquaculture Nutrition, 20(5), 547–556. https://doi.org/10.1111/anu.12110.

Ng, H. H. (2001). Clarias microstomus, a new species of clariid catfish from eastern Borneo (Teleostei: Siluriformes). Raffles Bulletin of Zoology, 49(2), 301–306.

Ng, H. H. (2003). Clarias insolitus, a new species of clariid catfish (Teleostei: Siluriformes) from southern Borneo. Zootaxa, 284, 1–8. https://doi.org/10.11646/zootaxa.284.1.1.

Ng, H. H. (2003). Clarias nigricans, a new species of clariid catfish (Teleostei: Siluriformes) from eastern Borneo. The Raffles Bulletin of Zoology, 51(2), 393–398. https://web.archive.org/web/20090219000000*/http://rmbr.nus.edu.sg/rbz/biblio/51/51rbz393-398.pdf. (if you wish to include a link, this is a likely archived version)

Nguyen, L. T. H., & Janssen, C. R. (2002). Embryo-larval toxicity tests with the African catfish (Clarias gariepinus): Comparative sensitivity of endpoints. Archives of Environmental Contamination and Toxicology, 42(2), 256–262. https://doi.org/10.1007/s00244-001-0012-6.

Nugegoda, D., & Rainbow, P. S. (1988). Effect of chelating agent (EDTA) on zinc uptake and regulation by Palaemon elegans (Crustacea: Decapoda). Journal of the Marine Biological Association of the United Kingdom, 68(1), 25–35. https://doi.org/10.1017/S0025315400053004. (Add or verify DOI if needed)

Osman, A. G. M., Wuertz, S., Mekkawy, I. A., Exner, H.-J., & Kirschbaum, F. (2007). Lead induced malformations in embryos of the African catfish Clarias gariepinus (Burchell, 1822). Environmental Toxicology, 22(4), 375–389. https://doi.org/10.1002/tox.20268.

Osman, A. G. M., Wuertz, S., Mekkawy, I. A., Exner, H.-J., & Kirschbaum, F. (2007). Lead induced malformations in embryos of the African catfish Clarias gariepinus (Burchell, 1822). Environmental Toxicology, 22(4), 375–389. https://doi.org/10.1002/tox.20268.

Passow, H., Rothstein, A. A., & Clarkson, T. W. (1961). The general pharmacology of heavy metals. Pharmacological Reviews, 13(2), 185–224.

Patil, A., Palod, J., Singh, V. S., & Kumar, A. (2008). Effect of graded levels of chromium supplementation on certain serum biochemical parameters in broilers. Indian Journal of Animal Sciences, 78(10), 1149–1152.

Rahman, M. S., Islam, S. M. M., Haque, A., & Shahjahan, M. (2020). Toxicity of the organophosphate insecticide sumithion to embryo and larvae of zebrafish. Toxicology Reports, 7, 317–323. https://doi.org/10.1016/j.toxrep.2020.01.014.

Rajput, V., & Singh, S. K. (2012). Comparative toxicity of Butachlor, Imidacloprid, and sodium fluoride on protein profile of the walking catfish Clarias batrachus. Journal of Applied Pharmaceutical Science, 2(6), 121–124.

Rider, S. A., Davies, S. J., Jha, A. N., Clough, R., & Sweetman, J. W. (2010). Bioavailability of co-supplemented organic and inorganic zinc and selenium sources in a white fishmeal-based rainbow trout (Oncorhynchus mykiss) diet. Journal of Animal Physiology and Animal Nutrition, 94(1), 99–110. https://doi.org/10.1111/j.1439-0396.2009.00990.x.

Rohani, M. F., Bristy, A. A., Hasan, J., Hossain, K., & Shahjahan, M. (2021). Dietary zinc in association with vitamin E promotes growth performance of Nile tilapia. Biological Trace Element Research. https://doi.org/10.1007/s12011-021-02826-w.

Rohani, M. F., Bristy, A. A., Hasan, J., Hossain, K., & Shahjahan, M. (2021). Dietary zinc in association with vitamin E promotes growth performance of Nile tilapia. Biological Trace Element Research. https://doi.org/10.1007/s12011-021-02826-w.

Rohani, M. F., Islam, S. M., Hossain, M. K., Ferdous, Z., Siddik, M. A., Nuruzzaman, M., Padeniya, U., Brown, C., & Shahjahan, M. (2022). Probiotics, prebiotics and synbiotics improved the functionality of aquafeed: Upgrading growth, reproduction, immunity and disease resistance in fish. Fish & Shellfish Immunology, 120, 569–589. https://doi.org/10.1016/j.fsi.2021.12.009.

Salim, H. M., Lee, H. R., Jo, C., Lee, S. K., & Lee, B. D. (2012). Effect of dietary zinc proteinate supplementation on growth performance, and skin and meat quality of male and female broiler chicks. British Poultry Science, 53(1), 116–124. https://doi.org/10.1080/00071668.2012.655709.

Samson, J. C., & Shenker, J. (2000). The teratogenic effects of methylmercury on early development of the zebrafish, Danio rerio. Aquatic Toxicology, 48(4), 343–354. https://doi.org/10.1016/S0166-445X(00)00129-5.

Samson, J. C., & Shenker, J. (2000). The teratogenic effects of methylmercury on early development of the zebrafish, Danio rerio. Aquatic Toxicology, 48(4), 343–354. https://doi.org/10.1016/S0166-445X(00)00129-5.

Samson, J. C., & Shenker, J. (2000). The teratogenic effects of methylmercury on early development of the zebrafish, Danio rerio. Aquatic Toxicology, 48(4), 343–354. https://doi.org/10.1016/S0166-445X(00)00129-5.

Santos, G. S., Neumann, G., do Nascimento, C. Z., Domingues, C. E., Campos, S. X., Bombardelli, R. A., & Cestari, M. M. (2018). Exposure of male tilapia (Oreochromis niloticus) to copper by intraperitoneal injection: DNA damage and larval impairment. Aquatic Toxicology, 205, 123–129. https://doi.org/10.1016/j.aquatox.2018.10.008.

Sarkar, M. M., Rohani, M. F., Hossain, M. A. R., & Shahjahan, M. (2021). Evaluation of heavy metal contamination in some selected commercial fish feeds used in Bangladesh. Biological Trace Element Research. https://doi.org/10.1007/s12011-021-02758-9.

Sarkar, M. M., Rohani, M. F., Hossain, M. A. R., & Shahjahan, M. (2021). Evaluation of heavy metal contamination in some selected commercial fish feeds used in Bangladesh. Biological Trace Element Research. https://doi.org/10.1007/s12011-021-02758-9.

Sarkar, M., Islam, J. B., & Akter, S. (2016). Pollution and ecological risk assessment for the environmentally impacted Turag River, Bangladesh. Journal of Materials and Environmental Science, 7, 2295–2304.

Sarkar, M., Islam, J. B., & Akter, S. (2016). Pollution and ecological risk assessment for the environmentally impacted Turag River, Bangladesh. Journal of Materials and Environmental Science, 7, 2295–2304.

(Duplicate of reference 37 – include only once in final reference list.)

Schreck, C. B., & Lorz, H. W. (1978). Stress response of Coho salmon (Oncorhynchus kisutch) elicited by cadmium and potential use of cortisol as an indicator of stress. Journal of the Fisheries Research Board of Canada, 35(8), 1124–1129. https://doi.org/10.1139/f78-178.

Shahjahan, M., Islam, S. M., Bablee, A. L., Siddik, M. A. B., & Fotedar, R. (2021). Sumithion usage in aquaculture: Benefit or forfeit? Reviews in Aquaculture, 13, 2092–2111. https://doi.org/10.1111/raq.12572.

Shahjahan, M., Rahman, M. S., Islam, S. M. M., Uddin, M. H., & Al-Emran, M. (2019). Increase in water temperature increases acute toxicity of sumithion causing nuclear and cellular abnormalities in peripheral erythrocytes of zebrafish (Danio rerio). Environmental Science and Pollution Research, 26, 36903–36912. https://doi.org/10.1007/s11356-019-06595-5.

Shiau, S. Y., & Jiang, L. C. (2006). Dietary zinc requirements of grass shrimp, Penaeus monodon, and effects on immune responses. Aquaculture, 254(1–4), 476–482. https://doi.org/10.1016/j.aquaculture.2005.11.028.

Shukla, O. P., Rai, U. N., Singh, N. K., Dubey, S., & Baghel, V. S. (2007). Isolation and characterization of chromate resistant bacteria from tannery effluent. Journal of Environmental Biology, 28(2), 399–403.

Shukla, S., & Gautam, R. K. (2004). Histopathological changes in the kidney of Clarias batrachus exposed to Nuvan. Flora and Fauna, 10(1), 39–40.

Sterba, G. (1963). Freshwater fishes of the world (2nd impression). Vista Books.

Stohs, S. J., & Bagchi, D. (1995). Oxidative mechanisms in the toxicity of metal ions. Free Radical Biology and Medicine, 18(2), 321–336. https://doi.org/10.1016/0891-5849(94)00159-H.

Suchana, S. A., Ahmed, M. S., Islam, S. M. M., Rahman, M. L., Rohani, M. F., Ferdusi, T., Ahmmad, A. K. S., Fatema, M. K., Badruzzaman, M., & Shahjahan, M. (2021). Chromium exposure causes structural aberrations of erythrocytes, gills, liver, kidney, and genetic damage in striped catfish Pangasianodon hypophthalmus. Biological Trace Element Research, 199, 3869–3885. https://doi.org/10.1007/s12011-020-02415-0.

Suedel, B. C., Rodgers, J. J. H., & Deaver, E. (1997). Experiments that may affect toxicity of cadmium to freshwater organisms. Environmental Contamination and Toxicology, 33, 188–193. https://doi.org/10.1007/BF02040929. (Add or verify DOI if needed)

Tan, L.-N., Feng, L., Liu, Y., Jiang, J., Jiang, W.-D., Hu, K., Li, S.-H., & Zhou, X.-Q. (2011). Growth, body composition and intestinal enzyme activities of juvenile Jian carp (Cyprinus carpio var. Jian) fed graded levels of dietary zinc. Aquaculture Nutrition, 17(3), 338–345. https://doi.org/10.1111/j.1365-2095.2010.00792.x.

Teugels, G. G., Sudarto, & Pouyaud, L. (2001). Description of a new Clarias species from Southeast Asia based on morphological and genetical evidence (Siluriformes, Clariidae). Cybium, 25(1), 81–92. Archived from the original (PDF) on December 26, 2010. Retrieved June 24, 2009, from [URL if available].

Trudel, M., & Rasmussen, J. B. (2006). Bioenergetics and mercury dynamics in fish: A modeling perspective. Canadian Journal of Fisheries and Aquatic Sciences, 63(8), 1890–1902. https://doi.org/10.1139/f06-088. (Verify DOI if needed)

U.S. Environmental Protection Agency (EPA). (1996, December 1). Integrated Risk Information System (IRIS) [Electronic data file]. Office of Research and Development, National Center for Environmental Assessment. http://toxnet.nlm.nih.gov (Accessed September 2009)

Vesey, D. A. (2010). Transport pathways for cadmium in the intestine and kidney proximal tubule: Focus on the interaction with essential metals. Toxicology Letters, 198(1), 13–19. https://doi.org/10.1016/j.toxlet.2010.05.012.

Vielma, J., Ruohonen, K., & Peisker, M. (2002). Dephytinization of two soy proteins increases phosphorus and protein utilization by rainbow trout, Oncorhynchus mykiss. Aquaculture, 204(1–2), 145–156. https://doi.org/10.1016/S0044-8486(01)00648-0.

Wang, M. Q., Xu, Z. R., Zha, L. Y., & Lindemann, M. D. (2007). Effects of chromium nanocomposite supplementation on blood metabolites, endocrine parameters and immune traits in finishing pigs. Animal Feed Science and Technology, 139(1–2), 69–80. https://doi.org/10.1016/j.anifeedsci.2006.12.005.

Wang, R. F., Zhu, L. M., Zhang, J., An, X. P., Yang, Y. P., Song, M., & Zhang, L. (2020). Developmental toxicity of copper in marine medaka (Oryzias melastigma) embryos and larvae. Chemosphere, 247, 125923. https://doi.org/10.1016/j.chemosphere.2020.125923.

Witeska, M., Sarnowski, P., Ługowska, K., & Kowal, E. (2014). The effects of cadmium and copper on embryonic and larval development of ide (Leuciscus idus L.). Fish Physiology and Biochemistry, 40(1), 151–163. https://doi.org/10.1007/s10695-013-9834-1.

Witeska, M., Sarnowski, P., Ługowska, K., & Kowal, E. (2014). The effects of cadmium and copper on embryonic and larval development of ide (Leuciscus idus L.). Fish Physiology and Biochemistry, 40(1), 151–163. https://doi.org/10.1007/s10695-013-9834-1.

Witeska, M., Sarnowski, P., Ługowska, K., & Kowal, E. (2014). The effects of cadmium and copper on embryonic and larval development of ide (Leuciscus idus L.). Fish Physiology and Biochemistry, 40(1), 151–163. https://doi.org/10.1007/s10695-013-9834-1.

Witeska, M., Sarnowski, P., Ługowska, K., & Kowal, E. (2014). The effects of cadmium and copper on embryonic and larval development of ide Leuciscus idus L. Fish Physiology and Biochemistry, 40(1), 151–163. https://doi.org/10.1007/s10695-013-9829-y.

Xiong, D., Fang, T., Yu, L., Sima, X., & Zhu, W. (2011). Effects of nano-scale TiO₂, ZnO and their bulk counterparts on zebrafish: Acute toxicity, oxidative stress and oxidative damage. Science of the Total Environment, 409(8), 1444–1452. https://doi.org/10.1016/j.scitotenv.2010.12.022.

Yamaguchi, S., Miura, C., Ito, A., Agusa, T., Iwata, H., Tanabe, S., Tuyen, B. C., & Miura, T. (2007). Effects of lead, molybdenum, rubidium, arsenic, and organochlorines on spermatogenesis in fish: Monitoring at Mekong Delta area and in vitro experiment. Aquatic Toxicology, 83(1), 43–51. https://doi.org/10.1016/j.aquatox.2007.03.004.

Yamaguchi, S., Miura, C., Ito, A., Agusa, T., Iwata, H., Tanabe, S., Tuyen, B. C., & Miura, T. (2007). Effects of lead, molybdenum, rubidium, arsenic and organochlorines on spermatogenesis in fish: Monitoring at Mekong Delta area and in vitro experiment. Aquatic Toxicology, 83(1), 43–51. https://doi.org/10.1016/j.aquatox.2007.03.017.

Yan, W., Hamid, N., Deng, S., Jia, P. P., & Pei, D. S. (2020). Individual and combined toxicogenetic effects of microplastics and heavy metals (Cd, Pb, and Zn) perturb gut microbiota homeostasis and gonadal development in marine medaka (Oryzias melastigma). Journal of Hazardous Materials, 397, 122795. https://doi.org/10.1016/j.jhazmat.2020.122795.

Yan, W., Hamid, N., Deng, S., Jia, P. P., & Pei, D. S. (2020). Individual and combined toxicogenetic effects of microplastics and heavy metals (Cd, Pb, and Zn) perturb gut microbiota homeostasis and gonadal development in marine medaka (Oryzias melastigma). Journal of Hazardous Materials, 397, 122795. https://doi.org/10.1016/j.jhazmat.2020.122795.

Yu, H. R., Li, L. Y., Shan, L. L., Gao, J., Ma, C. Y., & Li, X. (2021). Effect of supplemental dietary zinc on the growth, body composition and anti-oxidant enzymes of coho salmon (Oncorhynchus kisutch) alevins. Aquaculture Reports, 20, 100744. https://doi.org/10.1016/j.aqrep.2021.100744.

Zha, L. Y., Wang, M. Q., Xu, Z. R., & Gu, L. Y. (2007). Efficacy of chromium(III) supplementation on growth, body composition, serum parameters, and tissue chromium in rats. Biological Trace Element Research, 119, 42–50. https://doi.org/10.1007/s12011-007-8049-5.

Zhang, H., Cao, H., Meng, Y., Jin, G., & Zhu, M. (2012). The toxicity of cadmium (Cd²⁺) towards embryos and pro-larva of soldatov’s catfish (Silurus soldatovi). Ecotoxicology and Environmental Safety, 80, 258–265. https://doi.org/10.1016/j.ecoenv.2012.03.016.

Zhang, T. Y., Liu, J. L., Zhang, J. L., Zhang, N., Yang, X., Qu, H. X., Xi, L., & Han, J. C. (2018). Effects of dietary zinc levels on the growth performance, organ zinc content, and zinc retention in broiler chickens. Revista Brasileira de Ciência Avícola, 20(1), 127–132. https://doi.org/10.1590/1806-9061-2017-0576.

Zhang, Y. N., Wang, S., Li, K. C., Ruan, D., Chen, W., Xia, W. G., Wang, S. L., Abouelezz, K. F. M., & Zheng, C. T. (2020). Estimation of dietary zinc requirement for laying duck breeders: Effects on productive and reproductive performance, egg quality, tibial characteristics, plasma biochemical and antioxidant indices, and zinc deposition. Poultry Science, 99(1), 454–462. https://doi.org/10.1016/j.psj.2019.10.038.

Published

2025-06-20

How to Cite

A review of toxicological effects of heavy metals on Clarias batrachus. (2025). Journal of Science Innovations and Nature of Earth, 5(2), 99-103. https://doi.org/10.59436/jsiane.417.2583-2093

Similar Articles

1-10 of 71

You may also start an advanced similarity search for this article.

Most read articles by the same author(s)

1 2 3 > >>