A REVIEW OF DENGUE VIRUS GENOME, STRUCTURAL AND NON-STRUCTURAL PROTEINS, AND LIFE CYCLE

Authors

  • Anil Kumar N.R.E.C. College, Khurja, Bulandshahr (affiliated to C.C.S. University, Meerut) Utter Pradesh, India. https://orcid.org/0000-0002-9551-6493
  • Hridayesh Arya N.R.E.C. College, Khurja, Bulandshahr (affiliated to C.C.S. University, Meerut) Utter Pradesh, India.
  • Praveen Verma Department of Zoology, Rajiv Gandhi University, Doimukh, Arunachal Pradesh
  • Sanjay Singh Department of Zoology, K A (PG) College, Kasganj, Uttar Pradesh, India
  • Vishan Kumar N.R.E.C. College, Khurja, Bulandshahr (affiliated to C.C.S. University, Meerut) Utter Pradesh, India.
  • Surbhi Mittal Department of Zoology, Kisan (PG) College, Simbhouli, Hapur, Uttar Pradesh, India
  • Manish Maheshwari Department of Zoology, DS College, Aligrah, Uttar Pradesh, India
  • Prem Sagar Department of Zoology, Govt. (PG) College, Jalesar, Uttar Pradesh, India
  • Anand Pratap Singh Department of Zoology, Agra College, Agra, Uttar Pradesh, India
  • Sonal Singh Department of Zoology, Agra College, Agra, Uttar Pradesh, India
  • Keshav Singh Department of Zoology, Agra College, Agra, Uttar Pradesh, India

DOI:

https://doi.org/10.59436/jsiane.com/archives3/2/76

Keywords:

Dengue virus, genomics, proteomics, structural proteins, non-structural proteins, life cycle.

Abstract

The dengue virus-infected Aedes mosquito bites that cause dengue fever and propagate the potentially fatal disease. Dengue virus infection poses a risk to over 3.9 billion individuals worldwide. Its widespread incidence is currently a significant health issue. A pathogenic creature with a unique nucleotide sequence in its genome provides instructions for RNA or DNA synthesis, and protein expression, also for the organism‟s survival and evolution. New species or strains that are potentially more virulent than their parent strains can emerge as a result of mutations or changes in the nucleotide sequence. In this review, we have discussed the structural organization, genome, proteins, and life cycle of dengue virus. We describe in detail the structural and non-structural proteins and their functions. We describe the organization of viral RNA; it consists of one open reading frame (encodes a single polyprotein), 5‟ UTRs with 5‟ capping, and 3‟ UTR without poly „A‟ tail. We have described in detail the life cycle of the dengue virus. This will aid in a better understanding of dengue virus organization, and life cycle.

 

 

References

Alcaraz-Estrada, S.L., Yocupicio-Monroy, M., del Angel, R.M. (2010). Insights into dengue virus genome replication. Future Virol., 5: 575–92. DOI: https://doi.org/10.2217/fvl.10.49

Alen, M.M.F., Schols, D. (2012). Dengue virus entry as a target for antiviral therapy. J. Trop. Med. 2012: 628475. DOI: https://doi.org/10.1155/2012/628475

Alvarez, D.E., Ezcurra, A.L. et al. (2005b). Role of RNA structures presents at the 30 UTR of dengue virus on translation, RNA synthesis, and viral replication. Virology, 339: 200–12. DOI: https://doi.org/10.1016/j.virol.2005.06.009

Alvarez, D.E., Lodeiro, M.F., Luduena, S.J. et al. (2005a). Long-range RNARNA interactions circularize the dengue virus genome. J Virol., 79: 6631–43. DOI: https://doi.org/10.1128/JVI.79.11.6631-6643.2005

Behnam, M.A.M., Nitsche, C., Boldescu, V. and Klein, C.D. (2016). The medicinal chemistry of dengue virus. J. Med. Chem., 59: 5622–5649. DOI: https://doi.org/10.1021/acs.jmedchem.5b01653

Byk, L.A. and Gamarnik, A.V. (2016). Properties and functions of the dengue virus capsid protein. Annu. Rev. Virol. 3: 263–281. DOI: https://doi.org/10.1146/annurev-virology-110615-042334

Chambers, T.J., Hahn, C.S., Galler, R. and Rice, C.M. (1990). Flavivirus genome organization, expression, and replication. Annu. Rev. Microbiol., 44: 649–688. DOI: https://doi.org/10.1146/annurev.mi.44.100190.003245

Clyde, K., Barrera, J. and Harris, E. (2008). The capsid-coding region hairpin element (cHP) is a critical determinant of dengue virus and West Nile virus RNA synthesis. Virology., 379: 314–23. DOI: https://doi.org/10.1016/j.virol.2008.06.034

Cruz-Oliveira, C. et al. (2015). Receptors and routes of dengue virus entry into the host cells. FEMS Microbiol. Rev., 39: 155–170. DOI: https://doi.org/10.1093/femsre/fuu004

Dighe, S.N.; Ekwudu, O.; Dua, K.; Chellappan, D.K.; Katavic, P.L.; Collet, T.A. (2019). Recent update on anti-dengue drug discovery. Eur. J. Med. Chem., 176: 431–455. DOI: https://doi.org/10.1016/j.ejmech.2019.05.010

Dwivedi, V.D., Tripathi, I.P. and Tripathi, R.C. (2017). Genomics, proteomics and evolution of dengue virus. Brief. Funct. Genom., 16: 217–227. DOI: https://doi.org/10.1093/bfgp/elw040

Falgout, B., Pethel, M., Zhang, Y. and Lai, C. (1991). Both nonstructural proteins NS2B and NS3 are required for the proteolytic processing of dengue virus nonstructural proteins. J. Virol., 65: 2467–2475 DOI: https://doi.org/10.1128/jvi.65.5.2467-2475.1991

Filomatori, C.V., Lodeiro, M.F., Alvarez, D.E. (2006). A50 RNA element promotes dengue virus RNA synthesis on a circular genome. Genes Dev., 20: 2238–49. DOI: https://doi.org/10.1101/gad.1444206

Gallichotte, E.N., Baric, T.J., Nivarthi, U. (2018). Genetic Variation between Dengue Virus Type 4 Strains Impacts Human Antibody Binding and Neutralization [J], Cell Rep., 25(5): 1214–1224. DOI: https://doi.org/10.1016/j.celrep.2018.10.006

Gamarnik, A. (2010). Role of the dengue virus 5’ and 3’ untranslated regions in viral replication. In Frontiers in Dengue Virus Research. Hethersett, UK: Caister Academic Press. 55–76

Garcia, M., Wehbe, M., Lévêque, N. and Bodet, C. (2017). Skin innate immune response to flaviviral infection. Eur. Cytokine Netw, 28: 41–51. DOI: https://doi.org/10.1684/ecn.2017.0394

Gebhard, L.G., Filomatori, C.V. and Gamarnik, A.V. (2011). Functional RNA elements in the dengue virus genome. Viruses, 3: 1739–56. DOI: https://doi.org/10.3390/v3091739

Gopala Reddy, S.B., Chin, W.X. and Shivananju, N.S. (2018). Dengue virus NS2 and NS4: Minor proteins, mammoth roles. Biochem. Pharmacol., 154: 54–63. DOI: https://doi.org/10.1016/j.bcp.2018.04.008

Gritsun, T.S. and Gould, E.A. (2006). Direct repeats in the 30 untranslated regions of mosquito-borne flaviviruses: possible implications for virus transmission. J Gen Virol., 87: 3297–305. DOI: https://doi.org/10.1099/vir.0.82235-0

Gritsun, T.S. and Gould, E.A. (2007). Origin and evolution of flavivirus 50 UTRs and panhandles: Trans-terminal duplications. Virology., 366: 8–15. DOI: https://doi.org/10.1016/j.virol.2007.04.011

Gritsun, T.S., Venugopal, K., de A., Zanotto, P.M. et al. (1997). Complete sequence of two tick-borne flaviviruses isolated from Siberia and the UK: analysis and significance of the 50 and 30-UTRs. Virus Res., 49: 27–39. DOI: https://doi.org/10.1016/S0168-1702(97)01451-2

Hahn, C.S., Hahn, Y.S., Rice, C., et al. (1987). Conserved elements in the 30 untranslated region of flavivirus RNAs and potential cyclization sequences. J Mol Biol., 198: 33–41. DOI: https://doi.org/10.1016/0022-2836(87)90455-4

Heinz, F. X. & Allison, S. L. (2000). Structures and mechanisms in flavivirus fusion. Adv. Virus Res., 55: 231–269. DOI: https://doi.org/10.1016/S0065-3527(00)55005-2

Issur, M. (2009). The flavivirus NS5 protein is a true RNA guanylyltransferase that catalyzes a two-step reaction to form the RNA cap structure. RNA., 15: 2340–2350. DOI: https://doi.org/10.1261/rna.1609709

Junjhon, J. et al. (2010). Influence of pr-M cleavage on the heterogeneity of extracellular dengue virus particles. J. Virol., 84: 8353–8358. DOI: https://doi.org/10.1128/JVI.00696-10

Keelapang, P., Sriburi, R., Supasa, S., Panyadee, N., Songjaeng, A., Jairungsri, A. (2004). Alterations of pr-M cleavage and virus export in pr-M junction chimeric dengue viruses. J. Virol., 78: 2367–2381. DOI: https://doi.org/10.1128/JVI.78.5.2367-2381.2004

Kuhn, R.J. et al. (2002). Structure of dengue virus: implications for flavivirus organization, maturation, and fusion. Cell., 108: 717–725.

Lim, S.P. (2019). Dengue drug discovery: Progress, challenges and outlook. Antivir. Res., 163: 156–178. DOI: https://doi.org/10.1016/j.antiviral.2018.12.016

Lindenbach, B.D. and Rice, C.M. (1999). Genetic interaction of flavivirus nonstructural proteins NS1 and NS4A as a determinant of replicase function. J. Virol., 73: 4611–4621. DOI: https://doi.org/10.1128/JVI.73.6.4611-4621.1999

Martinez, D.R., Yount, B., Nivarthi, U. (2020). Antigenic Variation of the Dengue Virus 2 Genotypes Impacts the Neutralization Activity of Human Antibodies in Vaccinees[J], Cell Rep., 33(1): 108226. DOI: https://doi.org/10.1016/j.celrep.2020.108226

Messina, J.P. et al. (2014). Global spread of dengue virus types: mapping the 70 year history. Trends Microbiol., 22: 138–146. DOI: https://doi.org/10.1016/j.tim.2013.12.011

Miller, S., Sparacio, S. and Bartenschlager, R. (2006). Subcellular localization and membrane topology of the dengue virus type 2 non- structural protein 4B. J. Biol. Chem., 281: 8854–8863. DOI: https://doi.org/10.1074/jbc.M512697200

Modhiran, N., Watterson, D., Muller, D.A., Panetta, A.K., Sester, D.P. and Liu, L. (2015). Dengue virus NS1 protein activates cells via Toll-like receptor 4 and disrupts endothelial cell monolayer integrity. Sci. Transl. Med., 7: 304ra142. DOI: https://doi.org/10.1126/scitranslmed.aaa3863

Naresh, P., Selvaraj, A., Shyam Sundar, P., Murugesan, S., Sathianarayanan, S., Namboori P.K. and Jubie, S. (2020). Targeting a conserved pocket (n-octyl-β-D-glucoside) on the dengue virus envelope protein by small bioactive molecule inhibitors. J. Biomol. Struct. Dyn., 40: 4866–4878. DOI: https://doi.org/10.1080/07391102.2020.1862707

Nasar, S., Rashid, N. and Iftikhar, S. (2020). Dengue proteins with their role in pathogenesis, and strategies for developing an effective anti-dengue treatment: A review. J. Med. Virol., 92: 941–955. DOI: https://doi.org/10.1002/jmv.25646

Normile, D. (2013). Surprising New Dengue Virus Throws a Spanner in Disease Control Efforts[J], Science, 342(6157): 415. DOI: https://doi.org/10.1126/science.342.6157.415

Olsthoorn, R.C. and Bol, J.F. (2001). Sequence comparison and secondary structure analysis of the 3’noncoding region of flavivirus genomes reveals multiple pseudoknots. RNA. 7: 1370–77.

Perera, R. and Kuhn, R.J. (2008). Structural proteomics of dengue virus. Curr. Opin. Microbiol. 11: 369–377. DOI: https://doi.org/10.1016/j.mib.2008.06.004

Phoo, W.W., El Sahili, A., Zhang, Z.Z., Chen, M.W., Liew, C.W. and Lescar, J. (2020). Crystal structures of full length DENV4 NS2B-NS3 reveal the dynamic interaction between NS2B and NS3. Antivir. Res. 182: 104900. DOI: https://doi.org/10.1016/j.antiviral.2020.104900

Polacek, C., Foley, J.E. and Harris, E. (2009a). Conformational changes in the solution structure of the dengue virus 50 end in the presence and absence of the 30 untranslated region. J Virol., 83: 1161–6. DOI: https://doi.org/10.1128/JVI.01362-08

Polacek, C., Friebe, P. & Harris, E. (2009b). Poly (A)-binding protein binds to the nonpolyadenylated 3′ untranslated region of dengue virus and modulates translation efficiency. J. Gen. Virol., 90: 687–692. DOI: https://doi.org/10.1099/vir.0.007021-0

Pujar, G.V., Sethu, A.K., Bhagyalalitha, M. and Singh, M. (2021). Dengue structural proteins as antiviral drug targets: Current status in the drug discovery &development. Eur. J. Med. Chem., 221: 113527. DOI: https://doi.org/10.1016/j.ejmech.2021.113527

Romero, T.A., Tumban, E., Jun, J. et al. (2006). Secondary structure of dengue virus type 4 30 untranslated region: impact of deletion and substitution mutations. J Gen Virol., 87: 3291–96. DOI: https://doi.org/10.1099/vir.0.82182-0

Shrivastava, G., García-Cordero, J., León-Juárez, M., Oza, G., Tapia-Ramírez, J. and Villegas-Sepulveda, N. (2017). NS2A comprises a putative viroporin of Dengue virus 2. Virulence. 8: 1450–1456. DOI: https://doi.org/10.1080/21505594.2017.1356540

Shrivastava, S., Tiraki, D. and A. Diwan, et al. (2018). Co-circulation of all the four dengue virus serotypes and detection of a novel clade of DENV-4 (genotype I) virus in Pune, India during 2016 season[J]. PLoS ONE. 13(2): e0192672. DOI: https://doi.org/10.1371/journal.pone.0192672

Shurtleff, A.C., Beasley, D.W., Chen, J.J. et al. (2001). Genetic variation in the 30 non-coding region of dengue viruses. Virology, 281: 75–87. DOI: https://doi.org/10.1006/viro.2000.0748

Silva, R.L., de Silva, A.M., Harris, E. et al. (2008). Genetic analysis of dengue 3 virus subtype III 50 and 30 non-coding regions. Virus Res., 135: 320–5. DOI: https://doi.org/10.1016/j.virusres.2008.03.007

Thomas, S.J., Endy, T.P. and Rothman, A.L. (2014). In Viral Infections of Humans Kaslow, R.A., Stanberry, L.R., & Le Duc, J.W Eds., 351–381. DOI: https://doi.org/10.1007/978-1-4899-7448-8_15

Thomas, S.J. and Yoon, I.K. (2019). A review of Dengvaxia: development to deployment. Hum Vaccin Immunother., 15(10): 2295–2314. DOI: https://doi.org/10.1080/21645515.2019.1658503

TuiskunenBäck, A., Lundkvist, A. (2013). Dengue viruses-An overview. Infect. Ecol. Epidemiol., 3: 19839 DOI: https://doi.org/10.3402/iee.v3i0.19839

Umareddy, I., Chao, A., Sampath, A., Gu, F. and Vasudevan, S.G. (2006). Dengue virus NS4B interacts with NS3 and dissociates it from single-stranded RNA. J. Gen. Virol., 87: 2605–2614. DOI: https://doi.org/10.1099/vir.0.81844-0

Uno, N. and Ross, T.M. (2018). Dengue virus and the host innate immune response. Emerg. Microbes Infect., 7: 167. DOI: https://doi.org/10.1038/s41426-018-0168-0

Vogels, C.B.F., Rückert, C. and Cavany, S.M. et al. (2019). Arbovirus coinfection and co-transmission: a neglected public health concern. PLoS Biol., 17(1): e3000130 DOI: https://doi.org/10.1371/journal.pbio.3000130

Wang, Q.Y., Patel, S.J., Vangrevelinghe, E., Hao, Y.X., Rao, R., Jaber, D. and Schul, W. et al. (2009). A small-molecule dengue virus entry inhibitor. Antimicrob. Agents Chemother. 53: 1823–1831. DOI: https://doi.org/10.1128/AAC.01148-08

Watterson, D., Modhiran, N. and Young, P.R. (2016). The many faces of the flavivirus NS1 protein offer a multitude of options for inhibitor design. Antivir. Res. 130: 7–18. DOI: https://doi.org/10.1016/j.antiviral.2016.02.014

Weaver, S.C. and Vasilakis, N. (2009). Molecular evolution of dengue viruses: contributions of phylogenetics to understanding the history and epidemiology of the preeminent arboviral disease. Infect Genet Evol., 9: 523–40. DOI: https://doi.org/10.1016/j.meegid.2009.02.003

Welsch, S. et al. (2009). Composition and three-dimensional architecture of the dengue virus replication and assembly sites. Cell Host Microbe., 5: 365–375. DOI: https://doi.org/10.1016/j.chom.2009.03.007

WHO. (2022). Dengue and severe dengue. Fact Sheet [Internet]. World Health Organization. Available from: https://www.who.int/news-room/fact-sheets/detail/dengue-and-severe-dengue.

Xie, X., Zou, J., Wang, Q.Y. and Shi, P.Y. (2015). Targeting dengue virus NS4B protein for drug discovery. Antivir. Res.,118: 39–45. DOI: https://doi.org/10.1016/j.antiviral.2015.03.007

Xie, X., Zou, J., Zhang, X., Zhou, Y. and Routh, A.L. et al. (2019). Dengue NS2A Protein Orchestrates Virus Assembly. Cell Host Microbe. 26: 606–622.e8. DOI: https://doi.org/10.1016/j.chom.2019.09.015

Yu, L., Nomaguchi, M., Padmanabhan, R. et al. (2008). Specific requirements for elements of the 50 and 30 terminal regions in flavivirus RNA synthesis and viral replication. Virology. 374: 170–85. DOI: https://doi.org/10.1016/j.virol.2007.12.035

Zhang, W. et al. (2003a). Visualization of membrane protein domains by cryo-electron microscopy of dengue virus. Nat. Struct. Mol. Biol., 10: 907–912. DOI: https://doi.org/10.1038/nsb990

Zhang, Y. et al. (2003b). Structures of immature flavivirus particles. EMBO J. 22: 2604–2613. DOI: https://doi.org/10.1093/emboj/cdg270

Zhou, Y., Mammen, J.M.P., Klungthong, C. et al. (2006). Comparative analysis reveals no consistent association between the secondary structure of the 30 -untranslated region of dengue viruses and disease syndrome. J Gen Virol., 87: 2595–603. DOI: https://doi.org/10.1099/vir.0.81994-0

Downloads

Published

2023-06-15

How to Cite

A REVIEW OF DENGUE VIRUS GENOME, STRUCTURAL AND NON-STRUCTURAL PROTEINS, AND LIFE CYCLE. (2023). Journal of Science Innovations and Nature of Earth, 3(2), 06-16. https://doi.org/10.59436/jsiane.com/archives3/2/76

Similar Articles

1-10 of 34

You may also start an advanced similarity search for this article.

Most read articles by the same author(s)

1 2 3 > >>