A review on interspecific competition and population dynamics of mosquitoes
DOI:
https://doi.org/10.59436/jsiane.381.2583-2093Keywords:
Mosquito-borne diseases, Interspecific competition, Vector ecology, larval development, insecticide resistance.Abstract
As carriers of several deadly illnesses, including dengue, chikungunya, malaria, the Zika virus, and lymphatic filariasis, mosquitoes are hematophagous insects of major medical significance. They are members of the Culicidae family and have intricate life cycles and ecological relationships that affect their capacity for survival and spread. The taxonomy, disease correlations, and vectorial potential of the main mosquito genera—Aedes, Culex, and Anopheles—are examined in this paper. It also looks at population control techniques, emphasizing the drawbacks of chemical pesticides, including their damage to the environment, development of resistance, and non-target impacts, and advocating for environmentally benign substitutes including microbiological agents and herbal larvicides. A significant focus is placed on interspecific competition, particularly at the larval stage, where mosquito species compete for food, space, and oxygen. These interactions influence morphological traits such as wing length and adult body size, directly affecting survival, fecundity, and vector competence. Environmental variables, including both biotic (predators, microbial flora) and abiotic (temperature, pH, resource availability) factors, further modulate these outcomes. The review synthesizes data on how interspecific and intraspecific competition impact mosquito population dynamics, larval development, and disease ecology. Understanding these multidimensional interactions is crucial for implementing sustainable vector control strategies. By integrating ecological principles with innovative, environmentally responsible technologies, future mosquito management can be both effective and ecologically sound.
References
Alomar, A., Chelbi, I., Hsairi, M., Zhioua, E., & Bouattour, A. (2023). Interspecific larval competition between Culex pipiens and Aedes albopictus (Diptera: Culicidae) under laboratory and semi-field conditions in Tunisia. Parasites & Vectors, 16(1), 1–13. https://doi.org/10.1186/s13071-023-05606-y
Alto, B. W., & Bettinardi, D. (2015). Temperature and density effects on survival and mosquito susceptibility to arboviral infection. Journal of Medical Entomology, 52(6), 1033–1038.
Alto, B. W., & Juliano, S. A. (2001). Precipitation and temperature effects on populations of Aedes albopictus (Diptera: Culicidae): Implications for range expansion. Journal of Medical Entomology, 38(5), 646–656.
Armistead, J. S., Nishimura, N., Arias, J. R., & Lounibos, L. P. (2008). Interspecific larval competition between Culex quinquefasciatus and Culex nigripalpus (Diptera: Culicidae) in Florida. Journal of Medical Entomology, 45(4), 629–637. https://doi.org/10.1093/jmedent/45.4.629
Barrera, R. (1996). Competition and resistance to starvation in larvae of container-inhabiting Aedes mosquitoes. Ecological Entomology, 21(2), 117–127. https://doi.org/10.1111/j.1365-2311.1996.tb01176.x
Bédhomme, S., Agnew, P., Sidobre, C., & Michalakis, Y. (2005). Kin selection, sib competition and the evolution of virulence. Heredity, 94(1), 73–79. https://doi.org/10.1038/sj.hdy.6800579
Becker, N., Petrić, D., Zgomba, M., Boase, C., Madon, M., Dahl, C., & Kaiser, A. (2010). Mosquitoes and their control (2nd ed.). Springer.
Bhatt, S., Gething, P. W., Brady, O. J., Messina, J. P., Farlow, A. W., Moyes, C. L., … & Hay, S. I. (2013). The global distribution and burden of dengue. Nature, 496(7446), 504–507. https://doi.org/10.1038/nature12060
Clements, A. N. (1999). The biology of mosquitoes: Volume 2. Sensory reception and behaviour. CABI Publishing.
Couret, J., Dotson, E., & Benedict, M. Q. (2014). Temperature, larval diet, and density effects on development rate and survival of Aedes aegypti (Diptera: Culicidae). PLoS ONE, 9(2), e87468. https://doi.org/10.1371/journal.pone.0087468
Edgerly, J. S., Willey, M. S., & Livdahl, T. (1999). Intraguild predation among larval treehole mosquitoes, Aedes albopictus, Aedes aegypti, and Aedes triseriatus (Diptera: Culicidae), in laboratory microcosms. Journal of Medical Entomology, 36(3), 394–399.
Fernandes, L., & Briegel, H. (2005). Reproductive physiology of Anopheles gambiae and An. atroparvus. Journal of Vector Ecology, 30(1), 11–18. https://www.sove.org/SOVE%20folder/journal/journal.htm
Ghosh, A., Chowdhury, N., & Chandra, G. (2012). Plant extracts as potential mosquito larvicides. Indian Journal of Medical Research, 135(5), 581–598.
Gimnig, J. E., Ombok, M., Otieno, S., Kaufman, M. G., Vulule, J. M., & Walker, E. D. (2002). Density-dependent development of Anopheles gambiae (Diptera: Culicidae) larvae in artificial habitats. Journal of Medical Entomology, 39(1), 162–172.
Grimstad, P. R., & Walker, E. D. (1991). Aedes triseriatus (Diptera: Culicidae) and La Crosse virus. IV. Nutritional deprivation of larvae affects the adult barriers to infection and dissemination. Journal of Medical Entomology, 28(3), 378–386.
Harrington, L. C., Edman, J. D., & Scott, T. W. (2008). Why do female Aedes aegypti (Diptera: Culicidae) feed preferentially and frequently on human blood? Journal of Medical Entomology, 38(3), 411–422. https://doi.org/10.1603/0022-2585-38.3.411
Hemingway, J., Hawkes, N. J., McCarroll, L., & Ranson, H. (2002). The molecular basis of insecticide resistance in mosquitoes. Insect Biochemistry and Molecular Biology, 34(7), 653–665.
Hoffmann, A. A., Montgomery, B. L., Popovici, J., Iturbe-Ormaetxe, I., Johnson, P. H., Muzzi, F., … & O’Neill, S. L. (2011). Successful establishment of Wolbachia in Aedes populations to suppress dengue transmission. Nature, 476(7361), 454–457.
Ho, B. C., Ewert, A., & Chew, L. M. (1989). Interspecific competition among tropical Aedes mosquitoes. Population Ecology, 31(1), 135–144. https://doi.org/10.1007/BF02515419
Isman, M. B. (2006). Botanical insecticides, deterrents, and repellents in modern agriculture and an increasingly regulated world. Annual Review of Entomology, 51, 45–66.
Jaga, K., & Dharmani, C. (2003). Sources of exposure to and public health implications of organophosphate pesticides. Reviews on Environmental Health, 18(2), 115–128.
Juliano, S. A., & Lounibos, L. P. (2005). Ecology of invasive mosquitoes: Effects on resident species and on human health. Ecology Letters, 8(5), 558–574. https://doi.org/10.1111/j.1461-0248.2005.00755.x
Juliano, S. A., Lounibos, L. P., & O’Meara, G. F. (2004). A field test for competitive effects of Aedes albopictus on Aedes aegypti in South Florida: Differences between sites of coexistence and exclusion? Oecologia, 139(4), 583–593. https://doi.org/10.1007/s00442-004-1540-7
Kraemer, M. U. G., Reiner, R. C., Brady, O. J., Messina, J. P., Gilbert, M., Pigott, D. M., … & Hay, S. I. (2019). Past and future spread of the arbovirus vectors Aedes aegypti and Aedes albopictus. Nature Microbiology, 4(5), 854–863.
Lawal, O. A., Adeleke, M. A., Olatunji, A. O., & Sam-Wobo, S. O. (2011). Observation on Anopheles and Aedes mosquitoes cohabiting breeding containers in some urban areas of Abeokuta, Southwestern Nigeria. Journal of Vector Borne Diseases, 48(3), 157–160. https://pubmed.ncbi.nlm.nih.gov/21985802/
Leisnham, P. T., & Juliano, S. A. (2012). Impacts of climate, land use, and biological invasion on the ecology of immature Aedes mosquitoes: Implications for La Crosse emergence. EcoHealth, 9(2), 217–228.
Lizuain, A. A., Stein, M., & Almirón, W. R. (2022). Interspecific competition between Aedes aegypti and Aedes albopictus (Diptera: Culicidae): A review. Journal of Medical Entomology, 59(4), 1359–1370. https://doi.org/10.1093/jme/tjac056
Lyimo, E. O., & Takken, W. (1993). Effects of adult body size on fecundity and the pre-gravid rate of Anopheles gambiae females in Tanzania. Medical and Veterinary Entomology, 7(4), 328–332. https://doi.org/10.1111/j.1365-2915.1993.tb00701.x
Mahgoub, M. M., Sulaiman, S. M., & Elaagip, A. H. (2017). Seasonal abundance and breeding habitats of Aedes aegypti in urban areas of Khartoum State, Sudan. Tropical Biomedicine, 34(4), 792–802. https://pubmed.ncbi.nlm.nih.gov/29641925/
Mbanzulu, K. M., Mapatano, M. A., & Mavoko, H. M. (2022). Co-breeding and spatio-temporal dynamics of Aedes aegypti and Anopheles mosquitoes in Kinshasa, Democratic Republic of the Congo. Parasites & Vectors, 15(1), 1–12. https://doi.org/10.1186/s13071-022-05485-4
Moore, C. G., & Whitacre, D. M. (1972). Competition in mosquitoes. 2. Production of inferior Culex tarsalis (Diptera: Culicidae) adults from larvae raised with Culex pipiens quinquefasciatus. Annals of the Entomological Society of America, 65(4), 914–918. https://doi.org/10.1093/aesa/65.4.914
Murrell, E. G., & Juliano, S. A. (2008). Detritus type alters the outcome of interspecific competition between Aedes aegypti and Aedes albopictus (Diptera: Culicidae). Journal of Medical Entomology, 45(3), 375–383. https://doi.org/10.1093/jmedent/45.3.375
Muturi, E. J., Costanzo, K., Kesavaraju, B., & Alto, B. W. (2010). Can pesticides stress alter mosquito predator–prey interactions? Ecotoxicology, 19(7), 1475–1481. https://doi.org/10.1007/s10646-010-0536-5
Ng’habi, K. R., Knols, B. G., Killeen, G. F., & Ferguson, H. M. (2005). Predicting the productivity of mosquito larval habitats using landscape and remotely sensed indicators. Malaria Journal, 4, 7. https://doi.org/10.1186/1475-2875-4-7
Noden, B. H., O’Neal, P. A., Fader, J. E., & Juliano, S. A. (2016). Impact of inter- and intra-specific competition among mosquito larvae on adult longevity, size, and emerging population patterns. Ecological Entomology, 41(1), 76–86.
Paaijmans, K. P., Blanford, S., Bell, A. S., Blanford, J. I., Read, A. F., & Thomas, M. B. (2009). Influence of climate on malaria transmission depends on daily temperature variation. Proceedings of the National Academy of Sciences, 107(34), 15135–15139. https://doi.org/10.1073/pnas.1006422107
Petersen, L. R., Jamieson, D. J., Powers, A. M., & Honein, M. A. (2016). Zika virus. New England Journal of Medicine, 374(16), 1552–1563.
Pocock, M. J. (2007). Can traits predict species’ vulnerability to extinction? A test with New Zealand birds. Animal Conservation, 10(3), 199–207. https://doi.org/10.1111/j.1469-1795.2007.00118.x
Ranson, H., N’Guessan, R., Lines, J., Moiroux, N., Nkuni, Z., & Corbel, V. (2011). Pyrethroid resistance in African anopheline mosquitoes: What are the implications for malaria control? Trends in Parasitology, 27(2), 91–98.
Relyea, R. A. (2002). The many faces of predation: How induction, selection, and thinning combine to alter prey phenotypes. Ecology, 83(7), 1953–1964.
Renshaw, M., Service, M. W., & Birley, M. H. (1993). Density-dependent regulation of Aedes cantans (Diptera: Culicidae) in natural and artificial populations. Ecological Entomology, 18(3), 223–229. https://doi.org/10.1111/j.1365-2311.1993.tb01198.x
Romeo Aznar, V., Alto, B. W., & Lounibos, L. P. (2018). The effects of larval competition on the fitness of Aedes aegypti and Aedes albopictus mosquitoes. Medical and Veterinary Entomology, 32(1), 70–77. https://doi.org/10.1111/mve.12266
Rueda, L. M., Patel, K. J., Axtell, R. C., & Stinner, R. E. (1990). Temperature-dependent development and survival rates of Culex quinquefasciatus and Aedes aegypti (Diptera: Culicidae). Journal of Medical Entomology, 27(5), 892–898. https://doi.org/10.1093/jmedent/27.5.892
Suleman, M. (1982). Competition between Aedes aegypti Linnaeus and Aedes albopictus Skuse (Diptera: Culicidae) in the laboratory. Mosquito News, 42(3), 366–371.
Tun-Lin, W., Burkot, T. R., & Kay, B. H. (2000). Effects of temperature and larval diet on development rates and survival of the dengue vector Aedes aegypti in north Queensland, Australia. Medical and Veterinary Entomology, 14(1), 31–37. https://doi.org/10.1046/j.1365-2915.2000.00207.x
Vinogradova, E. B. (2000). Culex pipiens pipiens mosquitoes: Taxonomy, distribution, ecology, physiology, genetics, applied importance and control. Pensoft Publishers.
World Health Organization. (2020). Vector-borne diseases. https://www.who.int/news-room/fact-sheets/detail/vector-borne-diseases
Yee, D. A., & Juliano, S. A. (2006). Consequences of detritus type in an aquatic microsystem: Effects on water quality, micro-organisms and performance of the dominant consumer. Freshwater Biology, 51(3), 448–459. https://doi.org/10.1111/j.1365-2427.2005.01509.x
Yee, D. A., & Juliano, S. A. (2007). Abundance matters: A field experiment testing the more-individuals hypothesis for richness–productivity relationships. Oecologia, 153(1), 153–162. https://doi.org/10.1007/s00442-007-0713-1

Downloads
Published
Issue
Section
License
Copyright (c) 2025 Maharaj Singh Educational Research Development Society

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.