PHYTOCHEMICAL ANALYSIS AND SYNERGISTIC LARVICIDAL ACTION OF ARGEMONE MEXICANA AGAINST THIRD INSTAR LARVAE OF AEDES AEGYPTI (DIPTERA: CULICIDAE)

Authors

  • Anil Kumar Research Scholar, Department of Zoology, N.R.E.C. College, Khurja-203131, District Bulandshahr, Uttar Pradesh, India https://orcid.org/0000-0002-9551-6493
  • Hridayesh Arya Associate Professor, Department of Zoology, N.R.E.C. College, Khurja-203131, District Bulandshahr, Uttar Pradesh, India

DOI:

https://doi.org/10.59436/jsiane.141.2583-2093

Keywords:

Synergistic, Aedes aegypti, Ethanolic extract, petroleum ether extract, LC50.

Abstract

Aedes aegypti is the principal dengue vector. A threat to public health exists globally due to the dengue vector's development of resistance as a result of the widespread use of chemical insecticides. Tropical and subtropical countries are especially susceptible to dengue vector infection. The focus of research has been on plant-based phytochemicals that are employed as larvicides against mosquitoes. Bioinsecticides made from plants are biodegradable, and safe for the environment. In the present investigation, Argemone mexicana leaf and seed extracts were successfully tested against the third instar of Aedes aegypti, in accordance with the guidelines of WHO. The aqueous extract of the leaf with LC50 and LC90 values of 133.25 and 311.68 ppm, ethanolic extract leaf with LC50 and LC90 values of 102.32 and 239.88 ppm, and petroleum ether extracts of the leaf with LC50 and LC90 values of 123.02 and 281 ppm. Similarly, aqueous, ethanolic, and petroleum ether seed extracts with LC50 values of 154.88, 120.22, and 104.71 ppm and LC90 values of 393.07, 281.83, and 239.88 ppm, respectively, in 24 h post-exposure. All the extracts were shown significant (P<0.05) larvicidal potential. Preliminary phytochemical analysis reveals the presence of different phytoconstituents. Our findings suggest that the leaves and seeds have larvicidal potential, this plant's metabolites may be a cost-effective and eco-friendly source that keeps the mosquito population below the threshold level

References

Abbott, W.S. (1925). A method of computing the effectiveness of an insecticide. Journal of Economic Entomology18: 265–267. https://doi.org/10.1093/jee/18.2.265a DOI: https://doi.org/10.1093/jee/18.2.265a

Akinyemi, K.O., Mendie, U.E., Smith, S.T., Oyefolu, A.O. and Coker, A.O. (2005). Screening of some medicinal plants used in South-West Nigerian traditional medicine for anti-salmonella typhi activity. Journal of Herbal Pharmacotherapy, 5(1): 45–60. https://doi.org/10.1080/j157v05n01_06 DOI: https://doi.org/10.1300/J157v05n01_06

Ali, H., Sabiha, S.,Islam, S., Rekha, S.B., Nesa, M. et al. (2017). Lethal action of Argemone mexicanaL.extracts against Culex quinquefasciatusSay larvae and Tribolium castaneum(Herbst.) adults. J Pharmacog Phytochem., 6: 466–469.

Aragón Sánchez, M., Serratos, C., Huerta-de la Peña, A., Aragón García, A., Pérez-Torres, B., et al. (2020). Effect by Ingestion of Extracts of Argemone mexicanaL. on Biological Parameters and Capability of Chrysoperla carnea (Stephens) to Increase in a Laboratory. Southwestern Entomologist, 45: 405. DOI: https://doi.org/10.3958/059.045.0209

Aziz, M., Hashan Arif E.I., Muhammad Dimyati N.I., Ishak I.H., Hamdan R.H. et al. (2021) Larvicidal effect of Vitex ovataThunb. (lamiales: Lamiaceae) leaf extract towards Aedes(stegomyia) aegypti(Linnaeus,1762) (Diptera: Culicidae). Parasitologia 1: 210–217. https://doi.org/10.3390/parasitologia1040022. DOI: https://doi.org/10.3390/parasitologia1040022

Azmathullah, N.Md., Asrar Sheriff, M. and Sultan Mohideen, A.K. (2011). Phytochemical Screening of Calotropis proceraFlower Extracts and Their Bio-Control Potential on Culexsp. Mosquito Larvae and Pupae, International J. of Pharmaceutical & Biological Archives, 2(6): 1718-1721.

Benelli, G. (2015). Research in mosquito control: Current challenges for a brighter future. Parasitology Research, 114: 2801–2805. https://doi.org/10.1007/s00436-015-4586-9 DOI: https://doi.org/10.1007/s00436-015-4586-9

Benelli, G. (2016). Plant-mediated synthesis of nanoparticles: A newer and safer tool against mosquito-borne diseases. Asian Pacific Journal of Tropical Biomedicine,6: 353–354. https://doi.org/10.1016/j.apjtb.2015.10.015 DOI: https://doi.org/10.1016/j.apjtb.2015.10.015

Chandrasekaran, T., Thyagarajan, A., Santhakumari, P.G., Pillai, A.K.B. and Krishnan, U.M. (2019). Larvicidal activity of essential oil from Vitex negundoand Vitex trifoliaon dengue vector mosquito Aedes aegyptii. Revista Da Sociedade Brasileira de Medicina Tropical,52. https://doi.org/10.1590/0037-8(Placeholder1)682-0459-2018 DOI: https://doi.org/10.1590/0037-8682-0459-2018

Das, M.K. and Ansari, M.A. (2003). Evaluation of repellent action of Cymbopogan martiniimartinii Stapf var sofia oil against Anopheles sundaicusin tribal villages of Car Nicobar Island, Andaman & Nicobar Islands, India.Journal of vector-borne diseases,40(3-4): 100–104.

Elawad, L.M.E., Eweis, E.A. and Abou-Bakr, H. (2014). Larvicidal activity of Argel (Solenostemma argelDel Hyne) and Prickly Poppy (Argemone mexicanaL.) Acetone Extracts against Mosquito Larvae of Culex quinquefasciatus(Say.) and Anopheles arabiensis(Diptera: Culicidae). Egyptian Journal of Biological Pest Control,24: 259-264.

Elia-Amira, N.M.R., Chen, C.D., Low, V.L., Lau, K.W., Haziqah-Rashid, A. et al. (2019). Adulticide resistance status of Aedes albopictus (Diptera: Culicidae) in Sabah, Malaysia: A statewide assessment. Journal of Medical Entomology, 56: 1715–1725. https://doi.org/10.1093/jme/tjz117 DOI: https://doi.org/10.1093/jme/tjz117

Finney, D.J. (1971). Probit analysis, third edition Cambridge University Press, Cambridge.

Ghosh, A., Chowdhury, N. and Chandra, G. (2012). Plant extracts as potential mosquito larvicides.The Indian journal of medical research,135: 581–598.

Granados-Echegoyen, C.A., Chan-Bacab, M.J., Ortega-Morales, B.O., Vásquez-López, A., Lagunez-Rivera, L. et al. (2018). Argemone mexicana(Papaverales: Papaveraceae) as an alternative for mosquito control: First report of larvicidal activity of flower extract. Journal of Medical Entomology,56: 261–267. https:// doi.org/10.1093/jme/tjy159 DOI: https://doi.org/10.1093/jme/tjy159

Harborne JB. (1998). Phytochemical method. A guide to modern technique of plant analysis. Third edition Chapman and Hall Pub. London, UK. 1998.

Ishak, I.H., Jaal, Z., Ranson, H. and Wondji, C.S. (2015). Contrasting patterns of insecticide resistance and knockdown resistance (kdr) in the dengue vectors Aedes aegyptiand Aedes albopictusfrom Malaysia. Parasites & Vectors, 8: 181 https://doi.org/10.1186/s13071-015-0797-2 DOI: https://doi.org/10.1186/s13071-015-0797-2

Jangir, P.K. and Prasad, A. (2022). Spatial distribution of insecticide resistance and susceptibility inAedes aegyptiandAedes albopictusin India.Int J Trop Insect Sci.,42:1019–1044. https://doi.org/10.1007/s42690-021-00670-w DOI: https://doi.org/10.1007/s42690-021-00670-w

Kamaraj, C., Bagavan, A., Rahuman, A.A., Zahir, A.A., Elango, G. et al. (2009). Larvicidal potential of medicinal plant extracts against Anopheles subpictusGrassi and Culex tritaeniorhynchus Giles(Diptera: Culicidae).Parasitology Research,104: 1163–1171. https://doi.org/10.1007/s00436-008-1306-8 DOI: https://doi.org/10.1007/s00436-008-1306-8

Kasiramar, G. (2018). Significant Role of Soxhlet Extraction Process in Phytochemical Research. Mintaje Journal of Pharmaceutical& Medical Sciences,7: 43-47.

Kona, M.P., Kamaraju, R., Donnelly, M.J. et al. (2018). Characterization and monitoring of deltamethrin-resistance in Anopheles culicifacies in the presence of a long-lasting insecticide-treated net intervention.Malar J,17: 414. DOI: https://doi.org/10.1186/s12936-018-2557-1

Kumar, S. and Pillai, M.K. (2011). Correlation between the reproductive potential and the pyrethroid resistance in an Indian strain of filarial vector, Culex quinquefasciatusSay (Diptera: Culicidae). Bull Entomol Res., 101: 25–31. DOI: https://doi.org/10.1017/S0007485310000131

Maurya, P., Sharma, P., Mohan, L., Verma, M.M. and Srivastava, C.N. (2012). Larvicidal efficacy of Ocimum basilicumextracts and its synergistic effect with neonicotinoid in the management of Anopheles stephensi. Asian Pacific Journal of Tropical Disease,2: 110–116. https://doi.org/10.1016/s2222-1808(12)60027-9 DOI: https://doi.org/10.1016/S2222-1808(12)60027-9

Ministry of Health & Family Welfare-Government of India (2021) National Center for Vector Borne Diseases Control (NCVBDC). Retrieved January 20, 2022, from https://nvbdcp.gov.in/index4.php?lang=1&level=0&linkid=431&lid=3715.

Nagpal, B., Sogan, N., Kapoor, N., Singh, H., Kala, S. et al. (2018). Larvicidal activity of Ricinus communisextracts against mosquitoes. Journal of Vector-Borne Diseases,55: 282. https://doi.org/10.4103/0972-9062.256563 DOI: https://doi.org/10.4103/0972-9062.256563

Nancy, A. and Praveena, A. (2017). Argemone mexicana: A Boon to Medicinal and Pharmacological Approaches in Current Scenario. Cardiovascular & hematological agents in medicinal chemistry,15: 78-90. https://doi.org/10.2174/1871525715666170830130155 DOI: https://doi.org/10.2174/1871525715666170830130155

Patil, D.R. and Zambare, S.P. (2019). Insecticidal activity of seeds extracts of Argemone mexicana against Tribolium castaneum(Herbst, 1797) (Coleoptera: Tenebrionidae). Int J of Life Sciences,13: 102-105.

Pavunraj, M., Ramesh, V., Sakthivelkumar, S., Veeramani, V. and Janarthanan, S. (2017). Larvicidal and enzyme inhibitory effects of Acalypha fruticose(F.) and Catharanthus roseusL (G) DON leaf extracts against Culex quinquefasciatus(Say)(Diptera: Culicidae). Asian J Pharm Clin Res.,10: 213–20. https://doi.org/10.22159/ajpcr.2017.v10i3.16029 DOI: https://doi.org/10.22159/ajpcr.2017.v10i3.16029

Rajasudha, V. and Manikandan, R. (2019). Phytochemical screening and High-performance liquid chromatography (HPLC) profile of different extracts of Euphorbia hirta (Linn). Journal of Pharmacognosy and Phytochemistry, 8: 45-50.

Rattan, R.S. (2010). Mechanism of action of insecticidal secondary metabolites of plant origin. Crop Protection, 29: 913–920. https://doi.org/10.1016/j.cropro.2010. 05.008 DOI: https://doi.org/10.1016/j.cropro.2010.05.008

Ravindran, D.R., Bharathithasan, M., Ramaiah, P., Rasat, M.S.M., Rajendran, D.et al. (2020) Chemical composition and larvicidal activity of flower extracts from Clitoria ternateaagainst Aedes (Diptera: Culicidae). Journal of Chemistry,1–9. https://doi.org/10.1155/2020/3837207 DOI: https://doi.org/10.1155/2020/3837207

Sakthivadivel, M., Eapen, A. and Dash, A.P. (2012). Evaluation of toxicity of plant extracts against the vector of lymphatic filariasis,Culex quinquefasciatus. Indian J Med Res.,135: 397-400.

Sakthivadivel, M. and Thilagavathy, D. (2003). Larvicidal and chemosterilant activity of the acetone fraction of petroleum ether extract from Argemone mexicanaL. seed. Bioresource Technology,89: 213–216. https://doi.org/10.1016/s0960-8524(03)00038-5 DOI: https://doi.org/10.1016/S0960-8524(03)00038-5

Sharma, A.K., Tiwari, U., Gaur, M.S. and Tiwari, R.K. (2016). Assessment of malathion and its effects on leukocytes in human blood samples. Journal of Biomedical Research,30: 52–59. https://doi.org/10.7555/ JBR.30.20120073 DOI: https://doi.org/10.7555/JBR.30.20120073

Vetal, D.S. and Pardeshi, A.B. (2019). Larvicidal potential of Argemone mexicanaL. plant extracts against Spodoptera liturafab. Pharma Innovation,8: 698-702.

Warikoo, R. and Kumar, S. (2013). Impact of Argemone mexicana extracts on the cidal, morphological, and behavioral response of dengue vector, Aedes aegyptiL. (Diptera: Culicidae). Parasitology Research,112: 3477–3484. https://doi.org/10.1007/s00436-013-3528-7 DOI: https://doi.org/10.1007/s00436-013-3528-7

Warikoo, R. and Kumar, S. (2014). Impact of the Argemone mexicana stem extracts on the reproductive fitness and behavior of adult dengue vector, Aedes aegyptiL. (Diptera: Culicidae). International Journal of Insect Science,6: IJIS.S19006.https://doi.org/10.4137/ijis.s 19006 DOI: https://doi.org/10.4137/IJIS.S19006

World Health Organization (2021) Dengue and Severe Dengue. Available online: https://www.who.int/news-room/q-adetail/dengue-and-severe-dengue (accessed on 25 June 2021).

World Health Organization. (2005) Guidelines for laboratory and field testing of mosquito larvicides. Available online: https://apps.who.int/iris/handle/10665/69101 (Retrieved June 5, 2021)

World Health Organization.(‎3122). wdohve‎ lovtlo‎ yvilau‎slt‎iytado‎ dvythdou.‎Wltoa‎Hydovi‎Otgdohzdvhlo.https://apps.who.int/iris/handle/10665/44479Zenab sh.

Abou-Elnaga(2015). Strong larvicidal properties of Argemone mexicanaL. against medically important vectors Culex pipiensand Aedes aegypti. Int J Mosq Res.,2: 09-12.

Downloads

Published

2022-02-20

How to Cite

PHYTOCHEMICAL ANALYSIS AND SYNERGISTIC LARVICIDAL ACTION OF ARGEMONE MEXICANA AGAINST THIRD INSTAR LARVAE OF AEDES AEGYPTI (DIPTERA: CULICIDAE). (2022). Journal of Science Innovations and Nature of Earth, 2(2), 14-20. https://doi.org/10.59436/jsiane.141.2583-2093

Similar Articles

1-10 of 18

You may also start an advanced similarity search for this article.