DECIPHERING THE ROLE OF GENE EDITING: RETORT FOR PERPLEXED UNHEALTHY AND DISEASED CONDITIONS

Authors

  • Shweta Sharma College of Biotechnology, DUVASU, Mathura, India(281001)
  • Parul Singh College of Biotechnology, DUVASU, Mathura, India(281001)
  • Akshita Tiwari College of Biotechnology, DUVASU, Mathura, India(281001)
  • Faizan ul Haque Nagrami College of Biotechnology, DUVASU, Mathura, India(281001)
  • Vijaylakshmi Tripathi College of Biotechnology, DUVASU, Mathura, India(281001)
  • Nupur Raghav College of Biotechnology, DUVASU, Mathura, India(281001)
  • Priyambada Kumari College of Biotechnology, DUVASU, Mathura, India(281001)

DOI:

https://doi.org/10.59436/jsiane.com/archives3/12/73

Keywords:

Epigenetic, Biotechnology, CRISPR, ZFN, TALENs, Nucleases

Abstract

A breakthrough approach that unleashed the function of bacterial nucleases and the engineered ones has prompted the Creation of innovative gene editing technologies and procedures. In practically all eukaryotic cells, puzzled unclear Situations can be resolved by directly addressing certain genomic sequences and modifying them for use in various tactics. This expanding field of research has made this possibility possible. The ability to detect unique phenomena linked to the Genetic and epigenetic variables driving the development of disease have been enhanced through genome editing. It has majorly promoted the way for creating more precise cellular and animal models for elucidating pathological pathways and has shown remarkable potential in varying fields such as biotechnology, crop engineering, and biomedical science research Is under way. The creation of sophisticated methods based on nucleases, such as those connected to the CRISPR system, such as zinc finger nucleases (ZFNs) and transcription activator-like effector nucleases (TALENs), and CRISPR-CasAssociated nucleases, has greatly enhanced their practical utility in designing most promising biotechniques. Surprisingly, The applications of genome editing are leading to a variety of therapeutic and therapy options. This review will focus on Some applications and research that have revealed their implementation and strategies.

References

Adli, M. (2018). The CRISPR tool kit for genome editing and beyond. Nature communications, 9(1), 1911.

Barrangou, R., Fremaux, C., Deveau, H., Richards, M., Boyaval, P., Moineau, S., ...& Horvath, P. (2007). CRISPR providesacquired resistance against viruses in prokaryotes. Science, 315(5819), 1709-1712.

Bendixen, E., Danielsen, M., Larsen, K., &Bendixen, C. (2010). Advances in porcine genomics and proteomics—a toolbox for developing the pig as a model organism for molecular biomedical research. Briefings in functional genomics, 9(3), 208-219.

Bibikova, M., Carroll, D., Segal, D. J., Trautman, J. K., Smith, J., Kim, Y. G., &Chandrasegaran, S. (2001). Stimulation of homologous recombination through targeted cleavage by chimeric nucleases. Molecular and cellular biology, 21(1), 289-297.

Billon, P., Bryant, E. E., Joseph, S. A., Nambiar, T. S., Hayward, S. B., Rothstein, R., &Ciccia, A. (2017). CRISPR-mediated base editing enables efficient disruption of eukaryotic genes through induction of STOP codons. Molecular cell, 67(6), 1068-1079.

Boch, J., Scholze, H., Schornack, S., Landgraf, A., Hahn, S., Kay, S., ...&Bonas, U. (2009). Breaking the code of DNA binding specificity of TAL-type III effectors. Science, 326(5959), 1509-1512.

Bolotin, A., Quinquis, B., Sorokin, A., & Ehrlich, S. D. (2005). Clustered regularly interspaced short palindrome repeats (CRISPRs) have spacers of extrachromosomal origin. Microbiology, 151(8), 2551-2561.

Broughton, J. P., Deng, X., Yu, G., Fasching, C. L., Servellita, V., Singh, J., ...& Chiu, C. Y. (2020). CRISPR–Cas12-based detection of SARS-CoV-2. Nature biotechnology, 38(7), 870-874.

Capecchi, M. R. (1989). Altering the genome by homologous recombination. Science, 244(4910), 1288-1292.

Chan, A. W. (2013). Progress and prospects for genetic modification of nonhuman primate models in biomedical research. ilar Journal, 54(2), 211-223.

Cong, L., Ran, F. A., Cox, D., Lin, S., Barretto, R., Habib, N., ...& Zhang, F. (2013). Multiplex genome engineering using CRISPR/Cas systems. Science, 339(6121), 819-823.

Cox, D. B. T., Platt, R. J., & Zhang, F. (2015). Therapeutic genome editing: prospects and challenges. Nature medicine, 21(2), 121-131.

Danna, K., & Nathans, D. (1971). Specific cleavage of simian virus 40 DNA by restriction endonuclease of Hemophilusinfluenzae. Proceedings of the National Academy of Sciences, 68(12), 2913-2917.

Gaudelli, N. M., Komor, A. C., Rees, H. A., Packer, M. S., Badran, A. H., Bryson, D. I., & Liu, D. R. (2017). Programmable base editing of A• T to G• C in genomic DNA without DNA cleavage. Nature, 551(7681), 464-471.

Gilbert, L. A., Larson, M. H., Morsut, L., Liu, Z., Brar, G. A., Torres, S. E., ...&Qi, L. S. (2013). CRISPR-mediated modular RNA-guided regulation of transcription in eukaryotes. Cell, 154(2), 442-451.

Hess, G. T., Frésard, L., Han, K., Lee, C. H., Li, A., Cimprich, K. A., ...&Bassik, M. C. (2016). Directed evolution using dCas9-targeted somatic hypermutation in mammalian cells. Nature methods, 13(12), 1036-1042.

Jansen, R., Embden, J. D. V., Gaastra, W., &Schouls, L. M. (2002). Identification of genes that are associated with DNA repeats in prokaryotes. Molecular microbiology, 43(6), 1565-1575.

Jeggo, P. A. (1998). 5 DNA Breakage and Repair. Advances in genetics, 38, 185-218.

Jinek, M., Chylinski, K., Fonfara, I., Hauer, M., Doudna, J. A., &Charpentier, E. (2012). A programmable dual-RNA–guided DNA endonuclease in adaptive bacterial immunity. science, 337(6096), 816-821.

Jinek, M., East, A., Cheng, A., Lin, S., Ma, E., &Doudna, J. (2013). RNA-programmed genome editing in human cells. elife, 2, e00471.

Kampmann, M. (2020). CRISPR-based functional genomics for neurological disease. Nature Reviews Neurology, 16(9), 465-480.

Karavolias, N. G., Horner, W., Abugu, M. N., &Evanega, S. N. (2021). Application of gene editing for climate change in agriculture. Frontiers in Sustainable Food Systems, 5, 685801.

Kelly Jr, T. J., & Smith, H. O. (1970). A restriction enzyme from Hemophilusinfluenzae: II. Base sequence of the recognition site. Journal of molecular biology, 51(2), 393-409.

Kim, Y. G., Cha, J., &Chandrasegaran, S. (1996). Hybrid restriction enzymes: zinc finger fusions to Fok I cleavage domain. Proceedings of the National Academy of Sciences, 93(3), 1156-1160.

Klug, A., & Rhodes, D. (1987, January). Zinc fingers: a novel protein fold for nucleic acid recognition. In Cold Spring Harbor symposia on quantitative biology (Vol. 52, pp. 473-482). Cold Spring Harbor Laboratory Press.

Komor, A. C., Kim, Y. B., Packer, M. S., Zuris, J. A., & Liu, D. R. (2016). Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage. Nature, 533(7603), 420-424.

Kuscu, C., Parlak, M., Tufan, T., Yang, J., Szlachta, K., Wei, X., ...&Adli, M. (2017). CRISPR-STOP: gene silencing through base-editing-induced nonsense mutations. Nature methods, 14(7), 710-712.

Li, T., Huang, S., Zhao, X., Wright, D. A., Carpenter, S., Spalding, M. H., ...& Yang, B. (2011). Modularly assembled designer TAL effector nucleases for targeted gene knockout and gene replacement in eukaryotes. Nucleic acids research, 39(14), 6315-6325.

Ma, Y., Zhang, J., Yin, W., Zhang, Z., Song, Y., & Chang, X. (2016). Targeted AID-mediated mutagenesis (TAM) enables efficient genomic diversification in mammalian cells. Nature methods, 13(12), 1029-1035.

Mali, P., Yang, L., Esvelt, K. M., Aach, J., Guell, M., DiCarlo, J. E., ...& Church, G. M. (2013). RNA-guided human genome engineering via Cas9. Science, 339(6121), 823-826.

Miller, J. C., Holmes, M. C., Wang, J., Guschin, D. Y., Lee, Y. L., Rupniewski, I., ...& Rebar, E. J. (2007). An improved zinc-finger nuclease architecture for highly specific genome editing. Nature biotechnology, 25(7), 778-785.

Miller, J. C., Tan, S., Qiao, G., Barlow, K. A., Wang, J., Xia, D. F., ...& Rebar, E. J. (2011). A TALE nuclease architecture for efficient genome editing. Nature biotechnology, 29(2), 143-148.

Mojica, F. J., Díez-Villaseñor, C. S., García-Martínez, J., &Soria, E. (2005). Intervening sequences of regularly spaced prokaryotic repeats derive from foreign genetic elements. Journal of molecular evolution, 60, 174-182.

Mojica, F. J., Díez‐Villaseñor, C., Soria, E., &Juez, G. (2000). Biological significance of a family of regularly spaced repeats in the genomes of Archaea, Bacteria and mitochondria. Molecular microbiology, 36(1), 244-246.

Moscou, M. J., &Bogdanove, A. J. (2009). A simple cipher governs DNA recognition by TAL effectors. Science, 326(5959), 1501-1501.

Nishida, K., Arazoe, T., Yachie, N., Banno, S., Kakimoto, M., Tabata, M., ...& Kondo, A. (2016). Targeted nucleotide editing using hybrid prokaryotic and vertebrate adaptive immune systems. Science, 353(6305), aaf8729.

Niu, D., Wei, H. J., Lin, L., George, H., Wang, T., Lee, I. H., ...& Yang, L. (2017). Inactivation of porcine endogenous retrovirus in pigs using CRISPR-Cas9. Science, 357(6357), 1303-1307.

Porteus, M. H., & Baltimore, D. (2003). Chimeric nucleases stimulate gene targeting in human cells. Science, 300(5620), 763-763.

Pourcel, C., Salvignol, G., &Vergnaud, G. (2005). CRISPR elements in Yersiniapestisacquire new repeats by preferential uptake of bacteriophage DNA, andprovideadditional tools for evolutionary studies. Microbiology, 151(3), 653-663.

Ricroch, A. (2019, August). Global developments of genome editing in agriculture. In Transgenic research (Vol. 28, pp. 45-52). Springer International Publishing.

Rosen, L. E., Morrison, H. A., Masri, S., Brown, M. J., Springstubb, B., Sussman, D., ...& Seligman, L. M. (2006). Homing endonuclease I-CreI derivatives with novel DNA target specificities. Nucleic acids research, 34(17), 4791-4800.

Rouet, P., Smih, F., &Jasin, M. (1994). Introduction of double-strand breaks into the genome of mouse cells by expression of a rare-cutting endonuclease. Molecular and cellular biology, 14(12), 8096-8106.

Rudin, N., Sugarman, E., & Haber, J. E. (1989). Genetic and physical analysis of double-strand break repair and recombination in Saccharomycescerevisiae. Genetics, 122(3), 519-534.

Seligman, L. M., Chisholm, K. M., Chevalier, B. S., Chadsey, M. S., Edwards, S. T., Savage, J. H., &Veillet, A. L. (2002). Mutations altering the cleavage specificity of a homing endonuclease. Nucleic acids research, 30(17), 3870-3879.

Singh, M., Agarwal, V., Jindal, D., Pancham, P., Agarwal, S., Mani, S., &Jha, S. K. (2023). Recent Updates on Corticosteroid-Induced Neuropsychiatric Disorders and Theranostic Advancements through Gene Editing Tools. Diagnostics, 13(3), 337.

Smith, H. O., &Welcox, K. W. (1970). A restriction enzyme from Hemophilusinfluenzae: I. Purification and general properties. Journal of molecular biology, 51(2), 379-391

Smithies, O., Gregg, R. G., Boggs, S. S., Koralewski, M. A., &Kucherlapati, R. S. (1985). Insertion of DNA sequences into the human chromosomal β-globin locus by homologous recombination. Nature, 317(6034), 230-234.

Sussman, D., Chadsey, M., Fauce, S., Engel, A., Bruett, A., MonnatJr, R.,& Seligman, L. M. (2004). Isolation and characterization of new homing endonuclease specificities at individual target site positions. Journal of molecular biology, 342(1), 31-41.

Thomas, K. R., Folger, K. R., &Capecchi, M. R. (1986). High frequency targeting of genes to specific sites in the mammalian genome. Cell, 44(3), 419-428.

Tsai, K. L., Clark, L. A., & Murphy, K. E. (2007). Understanding hereditary diseases using the dog and human as companion model systems. Mammalian Genome, 18, 444-451.

Ugalde, L., Fañanas, S., Torres, R., Quintana-Bustamante, O., & Río, P. (2023). Clustered regularly interspaced short palindromic repeats/Cas9-mediated gene editing. A promising strategy in hematological disorders. Cytotherapy.

Urnov, F. D., Miller, J. C., Lee, Y. L., Beausejour, C. M., Rock, J. M., Augustus, S., ...& Holmes, M. C. (2005). Highly efficient endogenous human gene correction using designed zinc-finger nucleases. Nature, 435(7042), 646-651.

Urnov, F. D., Rebar, E. J., Holmes, M. C., Zhang, H. S., & Gregory, P. D. (2010). Genome editing with engineered zinc finger nucleases. Nature Reviews Genetics, 11(9), 636-646.

Veres, A., Gosis, B. S., Ding, Q., Collins, R., Ragavendran, A., Brand, H., ...&Musunuru, K. (2014). Low incidence of off-target mutations in individual CRISPR-Cas9 and TALEN targeted human stem cell clones detected by whole-genome sequencing. Cell stem cell, 15(1), 27-30.

Yang, L., Güell, M., Niu, D., George, H., Lesha, E., Grishin, D., ...& Church, G. (2015). Genome-wide inactivation of porcine endogenous retroviruses (PERVs). Science, 350(6264), 1101-1104.

Zabaleta, N., Unzu, C., Weber, N. D., & Gonzalez-Aseguinolaza, G. (2023). Gene therapy for liver diseases—progress and challenges. Nature Reviews Gastroenterology &Hepatology, 1-18.

Zhang, C., Srivastava, A. K., &Sadanandom, A. (2019). Targeted mutagenesis of the SUMO protease, Overly Tolerant to Salt1 in rice through CRISPR/Cas9-mediated genome editing reveals a major role of this SUMO protease in salt tolerance. BioRxiv, 555706.

Zhang, F., Cong, L., Lodato, S., Kosuri, S., Church, G. M., &Arlotta, P. (2011). Efficient construction of sequence-specific TAL effectors for modulating mammalian transcription. Nature biotechnology, 29(2), 149-153.

Zhang, H., Qin, C., An, C., Zheng, X., Wen, S., Chen, W., ...& Wu, Y. (2021). Application of the CRISPR/Cas9-based gene editing technique in basic research, diagnosis, and therapy of cancer. Molecular Cancer, 20, 1-22.

Zhao, J., Lai, L., Ji, W., & Zhou, Q.(2019). Genome editing in large animals: current status and future prospects. National Science Review, 6(3), 402-420.

Downloads

Published

2023-03-26

How to Cite

DECIPHERING THE ROLE OF GENE EDITING: RETORT FOR PERPLEXED UNHEALTHY AND DISEASED CONDITIONS. (2023). Journal of Science Innovations and Nature of Earth, 3(1), 46-51. https://doi.org/10.59436/jsiane.com/archives3/12/73