Analysis of the protective effects of extracts from the therapeutic plant Aegle marmelos against cisplatin-induced toxicity
DOI:
https://doi.org/10.59436/jsiane.293.2583-2093Keywords:
Medicinal plant extracts, protective effects, cisplatin-induced toxicity, antioxidant activity., Aegle marmelosAbstract
An important field of research in the fight against chemotherapy's negative side effects is the assessment of medicinal plant extracts for their protective benefits against cisplatin-induced toxicity. Many different types of cancer are treated with cisplatin, a chemotherapeutic drug based on platinum. The significant adverse effects of cisplatin, including nephrotoxicity, hepatotoxicity, and ototoxicity, frequently restrict its clinical utility, despite its efficiency. Damage to non-target tissues, including oxidative stress, inflammation, and apoptosis, causes these harmful effects. So, finding preventive medicines that can reduce these side effects of cisplatin without reducing its anticancer effectiveness is an urgent requirement. There is a wealth of bioactive substances found in medicinal plants that may have medicinal uses; these plants have a long history of use in traditional medical systems around the world. The established antioxidant, anti-inflammatory, and cytoprotective activities of these plants form the basis for their research as protective agents against cisplatin toxicity. The primary goals of this research are to determine which medicinal plant extracts are most effective at reducing cisplatin-induced toxicity and, secondarily, to determine the mechanisms of action and possible therapeutic uses of these extracts.
References
Abdel, M., A. E., Othman, M. S., & Aref, A. M. (2014). Azadirachta indica attenuates cisplatin-induced nephrotoxicity and oxidative stress. BioMed research international, 2014, 1-11. DOI: https://doi.org/10.1155/2014/647131
Akhtar, N., & Mirza, B. (2015). Phytochemical analysis and comprehensive evaluation of antimicrobial and antioxidant properties of 61 medicinal plant species. Arabian journal of chemistry. Article in press.
Asmawi, M. Z., Kankaanranta, H., Moilanen, E., & Vapaatalo, H. (1993). Anti‐inflammatory activities of Emblica officinalis Gaertn leaf extracts. Journal of Pharmacy and Pharmacology, 45(6), 581-584. DOI: https://doi.org/10.1111/j.2042-7158.1993.tb05605.x
Babu, E., Gopalakrishnan, V. K., Sriganth, I. N. P., Gopalakrishnan, R., & Sakthisekaran, D. (1995). Cisplatin induced nephrotoxicity and the modulating effect of glutathione ester. Molecular and cellular biochemistry, 144(1), 7-11. DOI: https://doi.org/10.1007/BF00926734
Badarinath, A. V., Rao, K. M., Chetty, C. M. S., Ramkanth, S., Rajan, T. V. S., & Gnanaprakash, K. (2010). A review on in-vitro antioxidant methods: comparisions,correlations and considerations. International Journal of PharmTech Research, 2(2), 1276-1285.
Bahmani, M., Baharvand-Ahmadi, B., Tajeddini, P., Rafieian-Kopaei, M., & Naghdi, N. (2016). Identification of medicinal plants for the treatment of kidney and urinary stones. Journal of renal injury prevention, 5(3), 129-133. DOI: https://doi.org/10.15171/jrip.2016.27
Benzie, I. F., & Szeto, Y. T. (1999). Total antioxidant capacity of teas by the ferric reducing/antioxidant power assay. Journal of agricultural and food chemistry, 47(2), 633-636. DOI: https://doi.org/10.1021/jf9807768
Camarena-Tello, J. C., Martinez-Flores, H. E., Garnica-Romo, M. G., Padilla- Ramirez, J. S., Saavedra-Molina, A., Alvarez-Cortes, O., & Rodiles-Lopez, J.
Chatha, S. A. S., Anwar, F., & Manzoor, M. (2006). Evaluation of the antioxidant activity of rice bran extracts using different antioxidant assays. Grasas y aceites, 57(3), 328-335. DOI: https://doi.org/10.3989/gya.2006.v57.i3.56
Chen, G. L., Zhang, X., Chen, S. G., Han, M. D., & Gao, Y. Q. (2017). Antioxidant activities and contents of free, esterified and insoluble-bound phenolics in 14 subtropical fruit leaves collected from the south of China. Journal of Functional Foods, 30, 290-302. DOI: https://doi.org/10.1016/j.jff.2017.01.011
Choudhary, R. K., & Swarnkar, P. L. (2011). Antioxidant activity of phenolic and flavonoid compounds in some medicinal plants of India. Natural product research, 25(11), 1101-1109. DOI: https://doi.org/10.1080/14786419.2010.498372
Dai, J., & Mumper, R. J. (2010). Plant phenolics: extraction, analysis and their antioxidant and anticancer properties. Molecules, 15(10), 7313-7352. DOI: https://doi.org/10.3390/molecules15107313
Dasari, S., & Tchounwou, P. B. (2014). Cisplatin in cancer therapy: molecular mechanisms of action. European journal of pharmacology, 740, 364-378. DOI: https://doi.org/10.1016/j.ejphar.2014.07.025
DeWoskin, R. S., & Riviere, J. E. (1992). Cisplatin-induced loss of kidney copper and nephrotoxicity is ameliorated by single dose diethyldithiocarbamate, but not mesna. Toxicology and applied pharmacology, 112(2), 182-189. DOI: https://doi.org/10.1016/0041-008X(92)90186-V
Dzoyem, J. P., & Eloff, J. N. (2015). Anti-inflammatory, anticholinesterase and antioxidant activity of leaf extracts of twelve plants used traditionally to alleviate pain and inflammation in South Africa. Journal of Ethnopharmacology, 160, 194-201. DOI: https://doi.org/10.1016/j.jep.2014.11.034
Hamzah, R. U., Egwim, E. C., Kabiru, A. Y., & Muazu, M. B. (2013). Phytochemical and in vitro antioxidant properties of the methanolic extract of fruits of Blighia sapida, Vitellaria paradoxa and Vitex doniana. Oxidants and Antioxidants in Medical Science, 2(3), 217-223. DOI: https://doi.org/10.5455/oams.090513.or.043
Huang, J. L., & Zhong, Z. G. (2011). Study of galic acid extracted from the leaves of Phyllanthus emblica on apoptotic mechanism of human hepatocellular carcinoma cells BEL-7404. Zhong yao cai= Zhongyaocai= Journal of Chinese medicinal materials, 34(2), 246-249.
Kampa, M., Alexaki, V. I., Notas, G., Nifli, A. P., Nistikaki, A., Hatzoglou, A., ... & Gravanis, A. (2004). Antiproliferative and apoptotic effects of selective phenolic acids on T47D human breast cancer cells: potential mechanisms of action. Breast Cancer Research, 6(2), R63-R74. DOI: https://doi.org/10.1186/bcr752
Katanic, J., Mihailovic, V., Matic, S., Stankovic, V., Stankovic, N., Boroja, T., ... & Mihailovic, M. (2015). The ameliorating effect of Filipendula hexapetala extracts on hepatorenal toxicity of cisplatin. Journal of Functional Foods, 18, 198-212. DOI: https://doi.org/10.1016/j.jff.2015.07.004
Kauffman, G. B. (1997). Alfred Werner's Research on the Platinum Metals. Platinum Metals Review, 41, 34-40. DOI: https://doi.org/10.1595/003214097X4113440
Kolli, D., Amperayani, K. R., & Parimi, U. (2015). Total phenolic content and antioxidant activity of Morinda tinctoria leaves. Indian journal of pharmaceutical sciences, 77(2), 226-230. DOI: https://doi.org/10.4103/0250-474X.156616
Kutwin, M., Sawosz, E., Jaworski, S., Kurantowicz, N., Strojny, B., & Chwalibog, (2014). Structural damage of chicken red blood cells exposed to platinum nanoparticles and cisplatin. Nanoscale research letters, 9(1), 1-6. DOI: https://doi.org/10.1186/1556-276X-9-257
Lakshmi, M. S., Reddy, U. K., & Rani, S. R. K. S. (2012). A review on medicinal plants for nephroprotective activity. Asian Journal of Pharmaceutical and Clinical Research. 5(4), 8-14.
Lebwohl, D., & Canetta, R. (1998). Clinical development of platinum complexes in cancer therapy: an historical perspective and an update. European Journal of Cancer, 34(10), 1522-1534. DOI: https://doi.org/10.1016/S0959-8049(98)00224-X
Lee, H. S., Kim, B. K., Nam, Y., Sohn, U. D., Park, E. S., Hong, S. A., ... & Jeong, J. H. (2013). Protective role of phosphatidylcholine against cisplatin-induced renal toxicity and oxidative stress in rats. Food and chemical toxicology, 58, 388-393. DOI: https://doi.org/10.1016/j.fct.2013.05.005
Lee, S. M., Ha, C. S., & Cho, W. J. (2000). Antitumor and antiangiogenic activities of phthalic acid derivative polymers with medium-molecular-weight. Molecular Crystals and Liquid Crystals Science and Technology. Section A. Molecular Crystals and Liquid Crystals, 354(1), 287-301. DOI: https://doi.org/10.1080/10587250008023621
Mahmoudi, S., Khali, M., Benkhaled, A., Benamirouche, K., & Baiti, I. (2016). Phenolic and flavonoid contents, antioxidant and antimicrobial activities of leaf extracts from ten Algerian Ficus carica L. varieties. Asian Pacific journal of tropical biomedicine, 6(3), 239-245. DOI: https://doi.org/10.1016/j.apjtb.2015.12.010
Maloisel, F., Kurtz, J. E., Andres, E., Gorodetsky, C., Dufour, P., & Oberling, F. (1995). Platin salts-induced hemolytic anemia: cisplatin-and the first case of carboplatin-induced hemolysis. Anti-cancer drugs, 6(2), 324-326. DOI: https://doi.org/10.1097/00001813-199504000-00018
McIntyre, B. S., Briski, K. P., Gapor, A., & Sylvester, P. W. (2000). Antiproliferative and apoptotic effects of tocopherols and tocotrienols on preneoplastic and neoplastic mouse mammary epithelial cells. Proceedings of the Society for Experimental Biology and Medicine, 224(4), 292-301. DOI: https://doi.org/10.1046/j.1525-1373.2000.22434.x
Moilanen, E. (1997). Anti-Inflammatory Activity of Extracts lirom Leaves of Phyllanthus emblica. Planta medica, 63, 518-524. DOI: https://doi.org/10.1055/s-2006-957754
Muller, L., Frohlich, K., & Bohm, V. (2011). Comparative antioxidant activities of carotenoids measured by ferric reducing antioxidant power (FRAP), ABTS bleaching assay (αTEAC), DPPH assay and peroxyl radical scavenging assay. Food Chemistry, 129(1), 139-148. DOI: https://doi.org/10.1016/j.foodchem.2011.04.045
Nagavani, V., Madhavi, Y., Rao, D. B., Rao, P. K., & Rao, T. R. (2010). Free radical scavenging activity and qualitative analysis of polyphenols by RP-
Nain, P., Saini, V., & Sharma, S. (2012a). In-vitro antibacterial and antioxidant activity of Emblica officinalis leaves extract. International Journal of Pharmacy and Pharmaceutical Sciences, 4(1), 385-389.
Nain, P., Saini, V., Sharma, S., & Nain, J. (2012b). Antidiabetic and antioxidant potential of Emblica officinalis Gaertn. leaves extract in streptozotocin- induced type-2 diabetes mellitus (T2DM) rats. Journal of Ethnopharmacology, 142(1), 65-71. DOI: https://doi.org/10.1016/j.jep.2012.04.014
Pabla, N., and Dong, Z. (2008). Cisplatin nephrotoxicity: mechanisms and renoprotective strategies. Kidney international, 73(9), 994-1007. DOI: https://doi.org/10.1038/sj.ki.5002786
Pietta, P. G. (2000). Flavonoids as antioxidants. Journal of natural products, 63(7), 1035-1042. DOI: https://doi.org/10.1021/np9904509
Pillai, T. G., John, M., & Thomas, G. S. (2011). Prevention of cisplatin induced nephrotoxicity by terpenes isolated from Ganoderma lucidum occurring in Southern Parts of India. Experimental and toxicologic pathology, 63(1-2), 157- 160. DOI: https://doi.org/10.1016/j.etp.2009.11.003
Rajapakse, R. M. G., & Dunuweera, S. P. (2017). Discovery, Chemistry, Anticancer Action and Targeting of Cisplatin. International Journal of Clinical Oncology and Cancer Research, 2(3), 65-74.
Reedijk, J., & Lohman, P. H. M. (1985). Cisplatin: synthesis, antitumour activity and mechanism of action. Pharmaceutisch Weekblad, 7(5), 173-180. DOI: https://doi.org/10.1007/BF02307573
Ritesh J. and Sanmati K. J. (2010). Traditional medicinal plants as anticancer agents from Chhattishgarh, India: An overview. International Journal of Phytomedicine, 2, 186-196.
Rosenberg, B. (1985). Charles F. Kettring prize. Fundamental studies with cisplatin. Cancer, 55(10), 2303-2316. DOI: https://doi.org/10.1002/1097-0142(19850515)55:10<2303::AID-CNCR2820551002>3.0.CO;2-L
Rosenberg, B., Renshaw, E., Vancamp, L., Hartwick, J., & Drobnik, J. (1967). Platinum-induced filamentous growth in Escherichia coli. Journal of bacteriology, 93(2), 716-721. DOI: https://doi.org/10.1128/jb.93.2.716-721.1967
Rosenberg, B., Vancamp, L. & Krigas, T. (1965). Inhibition of cell division in Escherichia Coli by electrolysis products from a platinum electrode. Nature, 205, 698-699. DOI: https://doi.org/10.1038/205698a0
Rosenberg, B., Vancamp, L., Trosko, J. E. and Mansour, V.H. (1969). Platinum compounds: a new class of potent antitumour agents. Nature, 222, 385-386. DOI: https://doi.org/10.1038/222385a0
Saad, S. Y., & Al-Rikabi, A. C. (2002). Protection effects of taurine supplementation against cisplatin-induced nephrotoxicity in rats. Chemotherapy, 48(1), 42-48. DOI: https://doi.org/10.1159/000048587
Sanchez-Moreno, C. (2002). Methods used to evaluate the free radical scavenging activity in foods and biological systems. Food science and technology international, 8(3), 121-137. DOI: https://doi.org/10.1106/108201302026770
Sandeep, D., & Krishnan Nair, C. K. (2010). Amelioration of cisplatin-induced nephrotoxicity by extracts of Hemidesmus indicus and Acorus calamus. Pharmaceutical biology, 48(3), 290-295. DOI: https://doi.org/10.3109/13880200903116048
Shahidi, F., & Zhong, Y. (2015). Measurement of antioxidant activity. Journal of functional foods, 18, 757-781. DOI: https://doi.org/10.1016/j.jff.2015.01.047
Sharma, S. K., & Goyal, N. (2012). Protective effect of Heliotropium eichwaldi against cisplatin-induced nephrotoxicity in mice. Zhong Xi Yi Jie He Xue Bao, 10(5), 555-560. DOI: https://doi.org/10.3736/jcim20120511
Somani, S. M., Husain, K., Whitworth, C., Trammell, G. L., Malafa, M., & Rybak, L. P. (2000). Dose‐Dependent Protection by Lipoic Acid against Cisplatin‐Induced Nephrotoxicity in Rats: Antioxidant Defense System. Basic & Clinical Pharmacology & Toxicology, 86(5), 234-241. DOI: https://doi.org/10.1034/j.1600-0773.2000.pto860507.x
Song, F. L., Gan, R. Y., Zhang, Y., Xiao, Q., Kuang, L., & Li, H. B. (2010). Total phenolic contents and antioxidant capacities of selected Chinese medicinal plants. International Journal of Molecular Sciences, 11(6), 2362-2372. DOI: https://doi.org/10.3390/ijms11062362
Stalikas, C. D. (2007). Extraction, separation, and detection methods for phenolic acids and flavonoids. Journal of separation science, 30(18), 3268-3295. DOI: https://doi.org/10.1002/jssc.200700261
Zhang, Y., Seeram, N. P., Lee, R., Feng, L., & Heber, D. (2008). Isolation and identification of strawberry phenolics with antioxidant and human cancer cell antiproliferative properties. Journal of agricultural and food chemistry, 56(3), 670-675. DOI: https://doi.org/10.1021/jf071989c
Tatjana Jurić et al (2020) Protective effects of Alchemilla vulgaris L. extracts against cisplatin-induced toxicological alterations in rats, DOI: https://doi.org/10.1016/j.sajb.2019.09.010
Ridzuan et al (2019), Protective Role of Natural Products in Cisplatin-Induced Nephrotoxicity, DOI: DOI: https://doi.org/10.2174/1389557519666190320124438
Hosseinian S, Khajavi Rad A, Hadjzadeh MA, Mohamadian Roshan N, Havakhah S, Shafiee S. The protective effect of Nigella sativa against cisplatin-induced nephrotoxicity in rats. Avicenna J Phytomed. 2016 Jan-Feb;6(1):44-54. PMID: 27247921; PMCID: PMC4884217.
Sharma S, Modi A, Narayan G, Hemalatha S. Protective Effect of Exacum lawii on Cisplatin-induced Oxidative Renal Damage in Rats. Pharmacogn Mag. 2018 Jan;13(Suppl 4):S807-S816. doi: 10.4103/pm.pm_209_17. Epub 2018 Jan 31. PMID: 29491637; PMCID: PMC5822504.
Jun Yeon Park et al (2015), Protective Effect of Artemisia asiatica Extract and Its Active Compound Eupatilin against Cisplatin-Induced Renal Damage, Article ID 483980 | https://doi.org/10.1155/2015/483980. DOI: https://doi.org/10.1155/2015/483980
Mostafa I. Waly et al (2013), Protective effects of emodin against cisplatin-induced oxidative stress in cultured human kidney (HEK 293) cells,
Jie Song et al (2014), Protective Effect of Standardized Extract of Ginkgo biloba against Cisplatin-Induced Nephrotoxicity, Article ID 846126 |
Norhashima Abd Rashid et al (2021), The role of natural antioxidants in cisplatin-induced hepatotoxicity, DOI: https://doi.org/10.1016/j.biopha.2021.112328
Shreesh Ojha et al (2016), Plant-Derived Agents for Counteracting Cisplatin-Induced Nephrotoxicity, Article ID 4320374 | DOI: https://doi.org/10.1155/2016/4320374
Jie Zhou et al (2022), Protective Effect of Natural Antioxidants on Reducing Cisplatin-Induced Nephrotoxicity, Article ID 1612348 | DOI: https://doi.org/10.1155/2022/1612348
Iskander, A.; Yan, L.-J. Cisplatin-Induced Kidney Toxicity: Potential Roles of Major NAD+-Dependent Enzymes and Plant-Derived Natural Products. Biomolecules 2022, 12, 1078. https://doi.org/10.3390/biom12081078. DOI: https://doi.org/10.3390/biom12081078
Dasari, S.; Njiki, S.; Mbemi, A.; Yedjou, C.G.; Tchounwou, P.B. Pharmacological Effects of Cisplatin Combination with Natural Products in Cancer Chemotherapy. Int. J. Mol. Sci. 2022, 23, 1532. DOI: https://doi.org/10.3390/ijms23031532
Tatjana Boroja et al (2018), Summer savory (Satureja hortensis L.) extract: Phytochemical profile and modulation of cisplatin-induced liver, renal and testicular toxicity, DOI: https://doi.org/10.1016/j.fct.2018.05.001
Esmaeel Panahi kokhdan et al (2021), Nephroprotective Effects of Zataria multiflora Boiss. Hydroalcoholic Extract, Carvacrol, and Thymol on Kidney Toxicity Induced by Cisplatin in Rats, Article ID 8847212 | DOI: https://doi.org/10.1155/2021/8847212
Okafor I. A. et al (2014), The Renoprotective Effect of Methanolic Extract of Portulaca
Panda, Prasana K. et al (2011), Nephroprotective effect of Bauhinia variegata (Linn.) whole stem extract against cisplatin-induced nephropathy in rats, DOI: 10.4103/0253-7613.77370. DOI: https://doi.org/10.4103/0253-7613.77370
Ahmad, S.; Hussain, A.; Hussain, A.; Abdullah, I.; Ali, M.S.; Froeyen, M.; Mirza, M.U. Quantification of Berberine in Berberis vulgaris L. Root Extract and Its Curative and Prophylactic Role in Cisplatin-Induced In Vivo Toxicity and In Vitro Cytotoxicity. Antioxidants 2019, 8, 185. https://doi.org/10.3390/antiox8060185. DOI: https://doi.org/10.3390/antiox8060185
Downloads
Published
Issue
Section
License
Copyright (c) 2023 Maharaj Singh Educational Research Development Society

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.