Role of Chitosan as a Natural Elicitor in Inducing Systemic Resistance against Plant Pathogens
DOI:
https://doi.org/10.59436/jsiane.375.2583-2093Keywords:
Chitosan, Chitin, sustainable crop protection, chitosan nanoparticlesAbstract
Chitosan is a biopolymer of natural origin produced by modification of chitin. Chitin is abundantly found in cell walls of fungi, shells of crustaceans and insect exoskeleton. Chitin to chitosan transformation involves removal of acetyl groups from the chitin structure. The deacetylation process converts chitin into chitosan. Chitosan is a biodegradable and nontoxic biopolymer. In agriculture, chitosan has gained popularity as a natural elicitor that stimulates the plant's own defence system without directly killing pathogens. Instead of acting as a pesticide, chitosan acts as immunity booster in plants, allowing them to defend themselves against a variety of diseases. This review focusses on chitosan's role in inducing systemic defence mechanisms in plants, as well as the underlying physiological and molecular responses triggered by chitosan application.
References
Agrawal, G. K., Rakwal, R., Jwa, N. S., & Agrawal, V. P. (2002). Signaling molecules and blast pathogen attack activates rice genes encoding pathogenesis-related proteins. Current Science, 82(5), 425–428.
Allan, C. R., & Hadwiger, L. A. (1979). The fungicidal effect of chitosan on fungi of varying cell wall composition. Experimental Mycology, 3(3), 285–287.
Amborabe, B. E., Bonmort, J., Fleurat-Lessard, P., & Roblin, G. (2008). Early events induced by chitosan on plant cells. Journal of Experimental Botany, 59(8), 2317–2324.
Bakker, P. A. H. M. (2014). Induced systemic resistance by beneficial microbes. Annual Review of Phytopathology, 52, 347–375.
Ben-Shalom, N., Ardi, R., Pinto, R., Aki, C., & Fallik, E. (2003). Controlling gray mould caused by Botrytis cinerea in cucumber plants by means of chitosan. Crop Protection, 22(2), 285–290.
Bitelli, M., Iriti, M., & Faoro, F. (2001). Chitosan-induced resistance in barley. Plant Biology, 3(6), 609–615.
Boller, T., & Felix, G. (2009). A renaissance of elicitors: Perception of microbe-associated molecular patterns and danger signals by pattern-recognition receptors. Annual Review of Plant Biology, 60, 379–406.
Chakraborty, M., Mahapatra, A., & Patra, S. (2008). Induction of resistance in tomato against Fusarium oxysporum f. sp. lycopersici using chitosan. Archives of Phytopathology and Plant Protection, 41(5), 387–395.
Croteau, R., Kutchan, T. M., & Lewis, N. G. (1987). Natural products (secondary metabolites). In Biochemistry and Molecular Biology of Plants (pp. 1250–1318).
De Oliveira, A. G., Ribeiro, S. F. F., Pastore, G. M., & de Melo, I. S. (2016). Chitosan as a resistance elicitor against Fusarium solani in soybeans. Pesticide Biochemistry and Physiology, 132, 13–19.
Doares, S. H., Syrovets, T., Weiler, E. W., & Ryan, C. A. (1995). Oligogalacturonides and chitosan activate plant defense genes through the octadecanoid pathway. Proceedings of the National Academy of Sciences, 92(10), 4095–4098.
El-Hassni, M., El Hadrami, A., Daayf, F., Barka, E. A., & El Hadrami, I. (2004). Chitosan enhances the defense responses of date palm against Fusarium oxysporum f. sp. albedinis. Phytopathologia Mediterranea, 43(1), 9–16.
El Hadrami, A., Adam, L. R., El Hadrami, I., & Daayf, F. (2010). Chitosan in plant protection. Marine Drugs, 8(4), 968–987.
Faoro, F., & Iriti, M. (2007). Cell death behind the scenes: The effects of chitosan on plant defense. Environmental and Experimental Botany, 60(1), 157–164.
Faoro, F., Iriti, M., & Maffi, D. (2008). Chitosan-treated barley shows reduced disease symptoms and altered expression of defense genes. European Journal of Plant Pathology, 120(2), 155–164.
Gerami, M., Majidian, P., Ghorbanpour, M., & Alipour, S. (2020). Exogenous melatonin and chitosan alleviate salt-induced oxidative stress in Stevia rebaudiana through improving antioxidant activity and secondary metabolite production. Scientia Horticulturae, 262, 109067.
Gill, S. S., & Tuteja, N. (2010). Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiology and Biochemistry, 48(12), 909–930.
Gornik, K., Grzesik, M., & Romanowska-Duda, Z. (2008). The effect of chitosan on rooting of grapevine cuttings and on subsequent plant growth under drought and pathogen stress. Journal of Fruit and Ornamental Plant Research, 16, 333–343.
Hadwiger, L. A., & Beckman, J. M. (1980). Chitosan as a component of pea–Fusarium solani interactions. Plant Physiology, 66(2), 205–211.
Hadwiger, L. A. (2013). Multiple effects of chitosan on plant systems: Solid science or hype. Plant Science, 208, 42–49.
Hidangmayum, A., Dwivedi, P., Katiyar, D., & Hemantaranjan, A. (2019). Application of chitosan on plant responses with special reference to abiotic stress. Physiology and Molecular Biology of Plants, 25(2), 313–326.
Hu, X., Neill, S. J., & Cai, W. (2004). Chitosan induces rapid activation of MAP kinases in Arabidopsis via the oxidative burst. Journal of Plant Physiology, 161(3), 289–296.
Iriti, M., & Faoro, F. (2008). Abscisic acid in plant–pathogen interactions. Recent Patents on Biotechnology, 2(3), 167–174.
Iriti, M., Sironi, M., Gomarasca, S., & Faoro, F. (2006). Pathogenesis-related proteins induced in grapevine leaves by chitosan. Phytoparasitica, 34(3), 239–247.
Iriti, M., & Faoro, F. (2009). Chitosan as a MAMP, searching for a PRR. Plant Signaling & Behaviour, 4(1), 66–68.
Kashyap, P. L., Xiang, X., & Heiden, P. (2020). Chitosan nanoparticle-based delivery systems for sustainable agriculture. International Journal of Biological Macromolecules, 157, 494–509.
Kauss, H. (1985). Callose biosynthesis as a calcium-regulated process and possible relation to plant disease resistance. Plant Cell Environment, 8(2), 71–75.
Khan, W., Prithiviraj, B., & Smith, D. L. (2003). Chitosan and plant disease resistance. Bulletin-OILB SROP, 26(10), 305–311.
Kohle, H., Jeblick, W., Poten, F., Blaschek, W., & Kauss, H. (1985). Chitosan-elicited callose synthesis in soybean cells as a Ca²⁺-dependent process. Plant Physiology, 77(3), 544–551.
Lafontaine, P. J., & Benhamou, N. (1996). Chitosan treatment: Induction of tyloses and accumulation of phenolic compounds in xylem tissues of tomato. Phytopathology, 86(5), 520–529.
Li, T., Liu, Y., Shi, L., & Zheng, Y. (2017). Effect of chitosan on metabolite profiles of tomato fruit during postharvest storage. Food Chemistry, 234, 139–148.
Lin, W., Hu, X., Zhang, W., & Rogers, W. J. (2005). Hydrogen peroxide mediates defence gene induction in Arabidopsis in response to chitosan. Plant Physiology and Biochemistry, 43(9), 893–901.
Lizama-Uc, M. M., Arjona-López, J. M., & Santana-Buzzy, N. (2007). Activation of MAPKs in response to chitosan and oligogalacturonides in banana leaves. Biologia Plantarum, 51(4), 647–651.
Maleki, S. S., Mohammadi, S., & Mirshekari, B. (2020). Chitosan: A sustainable elicitor in plant defense responses. Environmental and Sustainability Indicators, 6, 100036.
Petrov, V., Hille, J., Mueller-Roeber, B., & Gechev, T. S. (2015). ROS-mediated abiotic stress-induced programmed cell death in plants. Frontiers in Plant Science, 6, 69.
Pearce, R. B., & Ride, J. P. (1982). Chitosan as a component of induced resistance to Fusarium wilt in tomato. Physiological Plant Pathology, 21(3), 325–332.
Pieterse, C. M. J., Zamioudis, C., Berendsen, R. L., Weller, D. M., van Wees, S. C. M., & Younes, I., & Rinaudo, M. (2015). Chitin and chitosan preparation from marine sources: Structure, properties, and applications. Marine Drugs, 13(3), 1133–1174.
Pillai, C. K. S., Paul, W., & Sharma, C. P. (2009). Chitin and chitosan polymers: Chemistry, solubility, and fiber formation. Progress in Polymer Science, 34(7), 641–678.
Popp, J., Peto, K., & Nagy, J. (2013). Pesticide productivity and food security: A review. Agronomy for Sustainable Development, 33(1), 243–255.
Rabea, E. I., Badawy, M. E. T., Stevens, C. V., Smagghe, G., & Steurbaut, W. (2003). Chitosan as antimicrobial agent: Applications and mode of action. Biomacromolecules, 4(6), 1457–1465.
Rinaudo, M. (2006). Chitin and chitosan: Properties and applications. Progress in Polymer Science, 31(7), 603–632.
Romanazzi, G., Nigro, F., Ippolito, A., & Di Venere, D. (2002). Effects of preharvest chitosan treatments on postharvest storage of table grapes. Journal of Plant Pathology, 84(2), 123–129.
Romanazzi, G., Nigro, F., Ippolito, A., Di Venere, D., & Salerno, M. (2009). Effects of pre- and postharvest chitosan treatments to control storage grey mold of table grapes. Journal of Food Science, 67(5), 1862–1867.
Saberi-Riseh, R., Moradi-Pour, M., & Ghasempour, H. R. (2021). Nano chitosan: A promising plant growth stimulator and biocontrol agent. Carbohydrate Polymers, 261, 117904.
Sen, S., Venkatesh, J., Kang, C. H., & Park, Y. U. (2020). Redox signaling and MAP kinase cascades in plant abiotic stress responses. Frontiers in Plant Science, 11, 1127.
Sheikhalipour, M., Khoshgoftarmanesh, A. H., Niknam, V., & Morteza, E. (2021). Chitosan enhances antioxidant enzyme activities and photosynthetic pigments in strawberry under salt stress. Scientia Horticulturae, 281, 109987.
Vlot, A. C., Dempsey, D. A., & Klessig, D. F. (2009). Salicylic acid, a multifaceted hormone to combat disease. Annual Review of Phytopathology, 47, 177–206.
Walker-Simmons, M., Hadwiger, L. A., & Ryan, C. A. (1984). Hormonal regulation of plant disease resistance and protein synthesis. Science, 226(4680), 1420–1426.
Wang, M., Li, Q., & Duan, X. (2008). Chitosan oligosaccharide induces resistance to Tobacco mosaic virus in Nicotiana benthamiana and Arabidopsis thaliana. Plant Pathology, 57(3), 404–410.
Xing, K., Zhu, X., Peng, X., & Qin, S. (2015). Chitosan antimicrobial and eliciting properties for pest control in agriculture: A review. Agronomy for Sustainable Development, 35(2), 569–588.
Yin, H., Zhao, X., Du, Y., & Li, C. (2021). Foliar application of chitosan enhances resistance to Magnaporthe oryzae and improves growth in rice seedlings. Plant Physiology and Biochemistry, 159, 181–188.
Younes, I., & Rinaudo, M. (2015). Chitin and chitosan preparation from marine sources: Structure, properties, and applications. Marine Drugs, 13(3), 1133–1174.

Downloads
Published
Issue
Section
License
Copyright (c) 2025 Maharaj Singh Educational Research Development Society

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.