Physiological Effects of Chromium (Cr) on Spinacia oleracea L. under Controlled Conditions
DOI:
https://doi.org/10.59436/jsiane.392.2583-2093Keywords:
Spinacia oleracea, chromium stress, germination, biomass, chlorophyll, proline, physiological response, bioindicatorAbstract
Heavy metal contamination in agricultural soils is a significant environmental concern that jeopardises crop yield and food safety. This study examined the phytotoxic effects of hexavalent chromium (Cr⁶⁺), provided as potassium dichromate (K₂Cr₂O₇), on many physiological parameters of Spinacia oleracea L. (spinach). Plants were subjected to several doses of Cr (0, 50, 100, and 150 mg/L) in a controlled environment. The findings indicated a concentration-dependent reduction in germination %, root and shoot lengths, leaf area, biomass (both fresh and dry weight), and chlorophyll content. In contrast, proline accumulation rose considerably under Cr stress, demonstrating an active physiological response to metal-induced oxidative stress. The highest level of chromium (150 mg/L) caused a 30.76% drop in germination, a 41.5% drop in total chlorophyll, and a 71.2% rise in proline content compared to the control. These results indicate that Cr stress adversely affects spinach growth and metabolism, but proline accumulation may function as a protective adaptation strategy. The study underscores the susceptibility of spinach to chromium toxicity and advocates for its possible application as a bioindicator for environmental monitoring in damaged agroecosystems.
References
Abid, S. A. (2023). Beneficial traits of chromium resistant bacteria: mini review. Pure and Applied Biology, 12(1).
Adress, M. A., Mahmoud, A. M., & Elnahas, M. H. (2021). Nutritional significance and health benefits of leafy green vegetables: A review. Journal of Plant Science and Phytopathology, 5(1), 25–34.
Alam, M. Z., Ahmad, M., & Khan, M. A. (2021). Chromium stress in plants: An overview on uptake, translocation, toxicity, tolerance mechanisms, and phytoremediation strategies. Ecotoxicology and Environmental Safety, 212, 111999. https://doi.org/10.1016/j.ecoenv.2021.111999
Alharby, H. F., Metwali, E. M., Khan, M. H., & Bamagoos, A. A. (2016). Effect of chromium stress on the growth of spinach (Spinacia oleracea L.) and its accumulation in plant parts. Saudi Journal of Biological Sciences, 23(1), 157–162. https://doi.org/10.1016/j.sjbs.2015.03.010
Arnon, D. I. (1949). Copper enzymes in isolated chloroplasts. Polyphenoloxidase in Beta vulgaris. Plant Physiology, 24(1), 1–15. https://doi.org/10.1104/pp.24.1.1
Bates, L. S., Waldren, R. P., & Teare, I. D. (1973). Rapid determination of free proline for water-stress studies. Plant and Soil, 39, 205–207. https://doi.org/10.1007/BF00018060
Bergquist, S. Å. M., Gertsson, U. E., & Olsson, M. E. (2006). Influence of growth stage and postharvest storage on the ascorbic acid and carotenoid content and visual quality of baby spinach (Spinacia oleracea L.). Journal of the Science of Food and Agriculture, 86(3), 346–355. https://doi.org/10.1002/jsfa.2364
Duncan, D. B. (1995). Multiple range and multiple F tests. In G. W. Snedecor & W. G. Cochran (Eds.), Statistical Methods (8th ed., pp. 207–208). Iowa State University Press.
Gibilisco, P. E., Negrin, V. L., & Idaszkin, Y. L. (2022). Assessing the use of two halophytes species and seaweed composting in Cu-pollution remediation strategies. Marine Pollution Bulletin, 176, 113413.
Hirayama, T., & Shinozaki, K. (2010). Research on plant abiotic stress responses in the post-genome era: Past, present and future. The Plant Journal, 61(6), 1041–1052. https://doi.org/10.1111/j.1365-313X.2010.04124.x
Kabir, M. E., Hossain, M. A., & Amin, A. K. M. R. (2008). Seed germination and seedling growth of rice (Oryza sativa L.) in salinity. Bangladesh Journal of Agricultural Research, 33(3), 393–402. https://doi.org/10.3329/bjar.v33i3.2293
Kumar, A., Singh, S., Singh, R., & Kumar, S. (2019). Chromium-induced phytotoxicity and its amelioration by phytohormones: A review. Environmental and Experimental Botany, 162, 256–273. https://doi.org/10.1016/j.envexpbot.2019.03.013
Kumar, S., Singh, S., & Srivastava, R. K. (2019). Chromium-induced oxidative stress in plants: a review. Environmental and Experimental Botany, 160, 1–13. https://doi.org/10.1016/j.envexpbot.2019.01.002
Mustafa, A., Zulfiqar, U., Mumtaz, M. Z., Radziemska, M., Haider, F. U., Holatko, J., ... & Brtnicky, M. (2023). Nickel (Ni) phytotoxicity and detoxification mechanisms: A review. Chemosphere, 328, 138574.
Panda, S. K., & Choudhury, S. (2005). Chromium stress in plants. Brazilian Journal of Plant Physiology, 17(1), 95–102. https://doi.org/10.1590/S1677-04202005000100008
Peralta-Videa, J. R., Lopez, M. L., Narayan, M., Saupe, G., & Gardea-Torresdey, J. L. (2009). The biochemistry of environmental heavy metal uptake by plants: implications for the food chain. The International Journal of Biochemistry & Cell Biology, 41(8–9), 1665–1677. https://doi.org/10.1016/j.biocel.2009.03.005
Peralta-Videa, J. R., Lopez, M. L., Narayan, M., Saupe, G., & Gardea-Torresdey, J. (2009). The biochemistry of environmental heavy metal uptake by plants: Implications for the food chain. The International Journal of Biochemistry & Cell Biology, 41(8-9), 1665–1677. https://doi.org/10.1016/j.biocel.2009.03.005
Rai, V., Vajpayee, P., Ali, M. B., Tripathi, R. D., & Singh, S. N. (2004). Chromium-induced physio-biochemical changes in Spinacia oleracea L. plants grown in nutrient solution. Chemosphere, 58(5), 595–604. https://doi.org/10.1016/j.chemosphere.2004.09.017
Rai, V., Vajpayee, P., Ali, M. B., Tripathi, R. D., Kumar, A., & Singh, S. N. (2004). Chromium-induced physiochemical changes and oxidative stress in Spinacia oleracea L. plants. Chemosphere, 53(5), 531–540. https://doi.org/10.1016/j.chemosphere.2003.07.006
Sarathchandra, S. S., Rengel, Z., & Solaiman, Z. M. (2022). Remediation of heavy metal-contaminated iron ore tailings by applying compost and growing perennial ryegrass (Lolium perenne L.). Chemosphere, 288, 132573.
Shabaan, M., Asghar, H. N., Akhtar, M. J., Ali, Q., & Ejaz, M. (2021). Role of plant growth promoting rhizobacteria in the alleviation of lead toxicity to Pisum sativum L. International Journal of Phytoremediation, 23(8), 837-845.
Shanker, A. K., Cervantes, C., Loza-Tavera, H., & Avudainayagam, S. (2005). Chromium toxicity in plants. Environment International, 31(5), 739–753. https://doi.org/10.1016/j.envint.2005.02.003
Shanker, A. K., Cervantes, C., Loza-Tavera, H., & Avudainayagam, S. (2019). Chromium toxicity in plants. Environment International, 71, 130–145. https://doi.org/10.1016/j.envint.2014.06.019
Shanker, A. K., Cervantes, C., Loza-Tavera, H., & Avudainayagam, S. (2005). Chromium toxicity in plants. Environment International, 31(5), 739–753. https://doi.org/10.1016/j.envint.2005.02.003
Sharma, D., Tripathi, R. D., & Srivastava, S. (2021). Chromium stress and its mitigation strategies in crop plants. Plant Physiology Reports, 26(1), 1–15. https://doi.org/10.1007/s40502-020-00536-7
Sharma, P., Dubey, R. S., & Singh, V. (2021). Impact of chromium on plant growth and development: An overview. Environmental Pollution, 284, 117112. https://doi.org/10.1016/j.envpol.2021.117112
Singh, H. P., Batish, D. R., Kaur, G., Arora, K., & Kohli, R. K. (2013). Chromium toxicity and tolerance in plants. Environmental Chemistry Letters, 11(3), 229–254. https://doi.org/10.1007/s10311-013-0407-5
Singh, H. P., Batish, D. R., Kaur, G., Arora, K., & Kohli, R. K. (2013). Chromium toxicity and tolerance in plants. Environmental Chemistry Letters, 11, 229–254. https://doi.org/10.1007/s10311-013-0407-5
Steel, R. G. D., & Torrie, J. H. (1984). Principles and procedures of statistics: A biometrical approach (2nd ed.). McGraw-Hill Book Company.
Sun, Q., Zhang, Y., Ming, C., Wang, J., & Zhang, Y. (2023). Amended compost alleviated the stress of heavy metals to pakchoi plants and affected the distribution of heavy metals in soil-plant system. Journal of Environmental Management, 336, 117674.
Taghipour, S., & Saheli, M. (2008). Comparative study on the tolerance of different wheat cultivars to salinity stress in the seedling stage using some morphophysiological traits. Research Journal of Environmental Sciences, 2(3), 191–195.
Vajpayee, P., Tripathi, R. D., Rai, U. N., Ali, M. B., & Singh, S. N. (2000). Chromium accumulation reduces chlorophyll biosynthesis, nitrate reductase activity, and protein content in Nymphaea alba L. Chemosphere, 41(6), 1075–1082. https://doi.org/10.1016/S0045-6535(99)00529-0
Zayed, A. M., & Terry, N. (2003). Chromium in the environment: factors affecting biological remediation. Plant and Soil, 249, 139–156. https://doi.org/10.1023/A:1022504826342
Zayed, A. M., & Terry, N. (2003). Chromium in the environment: Factors affecting biological remediation. Plant and Soil, 249(1), 139–156. https://doi.org/10.1023/A:1022504826342
Zayed, B., Gowthaman, S., & Terry, N. (2020). Chromium accumulation, translocation, and chemical speciation in vegetable crops: A review. Environmental Pollution, 265, 114870. https://doi.org/10.1016/j.envpol.2020.114870
Zhu, Y. G. (2016). Plant–heavy metal interactions: Root growth, oxidative stress, and transport. In M. N. V. Prasad (Ed.), Heavy metal stress in plants: From biomolecules to ecosystems (pp. 215–237). Springer. https://doi.org/10.1007/978-3-642-34045-7_11
Zulfiqar, U., Haider, F. U., Maqsood, M. F., Mohy-Ud-Din, W., Shabaan, M., Ahmad, M., ... & Shahzad, B. (2023). Recent advances in microbial-assisted remediation of cadmium-contaminated soil. Plants, 12(17), 3147.

Downloads
Published
Issue
Section
License
Copyright (c) 2025 Maharaj Singh Educational Research Development Society

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.