INNOVATION IN BIOMATHEMATICS
DOI:
https://doi.org/10.59436/jsianev4i1/228Keywords:
Biomathematics, innovation, modelling, medicine.Abstract
The human anatomy is very complex structure created by God in which various organs and systems play their different roles. These processes are so complex that they cannot be easily studied wholly. Biomathematics is a field of study that helps indevelopment of predictive and analytical models of biological and medical systems. It has been used in many areas, including: Cellular neurobiology, Epidemic modelling and Population genetics. Innovation in Bio-mathematics can be a powerful tool for biological sciences. It can be useful for testing hypotheses, especially when a direct experiment cannot be conducted.
References
Mathematical Models in Biology by Leah Edelstein-Keshethttps://doi.org/10.1137/1.9780898719147.ch11 DOI: https://doi.org/10.1137/1.9780898719147.ch11
L. A. Segel, (1980), Ed. Mathematical Models in Molecular and Cellular Biology, Cambridge University Press, Cambridge, England.
Blake, J.R. Mucus Flow. Math. Biosci.17, 301-313 (1973). DOI: https://doi.org/10.1016/0025-5564(73)90073-4
Vasquez, Paula &Jin, Yuan & Palmer, Erik & Hill, David & Forest, M. (2016), Modelling and Simulation of Mucus Flow in Human Bronchial Epithelial Cell Cultures – Part I: Idealized Axisymmetric Swirling Flow. PLOS Computational Biology. 12. E1004872. 10.1371/journal.pcbi.1004872. DOI: https://doi.org/10.1371/journal.pcbi.1004872
Thiyagarajan, Padmavathi&Sathiyamoorthy, Senthamilselvi&Karuppusamy, Loganathan&Makinde, Oluwole& Sarris, Ioannis. (2022), Mass Transfer Effects on the Mucus Fluid with Pulsatile Flow Influence of the Electromagnetic Field. Inventions. 10.3390/inventions7030050. DOI: https://doi.org/10.3390/inventions7030050
Rubenstein, David & Yin, Wei & Frame, Mary. (2022), Flow in the lungs. 10.1016/B978-0-12-818034-1.00010-4. DOI: https://doi.org/10.1016/B978-0-12-818034-1.00010-4
J.C. Misra, S. Samanta, A mathematical model for the biomechanics of the body of a vertebra https://doi.org/10.1016/0898- 1221(88)90078-8
Niederer, Peter. (2010), Mathematical Foundations of Biomechanics. Critical reviews in biomedical engineering. 38. 533-77. 10.1615/CritRevBiomedEng.v38.i6.30 DOI: https://doi.org/10.1615/CritRevBiomedEng.v38.i6.30
Widmaier Eric P Hershel Raff Kevin T Strang and Arthur J Vander. 2011, Vander’s Human Physiology :TheMechanisms of Body Function. 12th ed. New York: McGraw-Hill.
Rodhin, J.A.G. (1966), Ultra structure and function of the human trachealMucosa. Am. Rev. Respir. Dis. 93, 1-15.
Puchelle, E., Zahm, J.M., Pollu, J.M. &Sadoul, P. (1980), Drug effect on visco- elasticity of mucus. Eur. J. Respir. Dis.61, (Supple.110), 195- 208.
May, R. M. (2001). Stability and Complexity in Model Ecosystems. Princeton University Press. DOI: https://doi.org/10.1515/9780691206912
Anderson, R. M., & May, R. M. (1992). Infectious Diseases of Humans: Dynamics and Control. Oxford University Press. DOI: https://doi.org/10.1093/oso/9780198545996.001.0001
Murray, J. D. (2003). Mathematical Biology I: An Introduction. Springer.
Wolfram, S. (2002). A New Kind of Science. Wolfram Media.
Koch, C. (1999). Biophysics of Computation: Information Processing in Single Neurons. Oxford University Press. DOI: https://doi.org/10.1093/oso/9780195104912.001.0001
Alon, U. (2007). An Introduction to Systems Biology: Design Principles of Biological Circuits. Chapman and Hall/CRC. DOI: https://doi.org/10.1201/9781420011432
Sorger, P. K., &Allerheiligen, S. R. (2018). Quantitative and Systems Pharmacology in the Post-genomic Era: New Approaches to Discovering Drugs and Understanding Therapeutic Mechanisms. Annu. Rev. Pharmacol. Toxicol.
Palsson, B. Ø. (2015). Systems Biology: Constraint-Based Reconstruction and Analysis. Cambridge University Press. DOI: https://doi.org/10.1017/CBO9781139854610
Railsback, S. F., & Grimm, V. (2019). Agent-Based and Individual-Based Modeling: A Practical Introduction. Princeton University Press.
Nelson, P. (2008). Biological Physics: Energy, Information, Life. W. H. Freeman.
Tripathee,S.M. (2017), Assessment of mucus transport rate in the human lung airways using mathematical model, J. Biol. Sci. Med. (2017) 3 (4): 17-25.
Tripathee SM, Verma VS (2016) Mucus flow in human lung airways: Effects of Air velocity cilia tip velocity and porosity parameter. International J Sci nad Res 632-636 Verma VS (2007) A mathematical study on mucus transport in the lung. J Nat Acad Math 21:107-117. DOI: https://doi.org/10.21275/v5i1.NOV152813
Tripathee, S.M. and Mishra Lokesh (2023), Biomathematics: An Introduction, nternational Journal of Innovative Research in Engineering Volume 4, Issue 1 (January-February 2023), PP: 170-172.
Verma VS (2008) A planar two layer unsteady state for mucociliary transport. JTS India 2:115-127. DOI: https://doi.org/10.56424/jts.v2i00.9965
Verma VS (2009) Mucus transport: A fluid mechanical Steady state model. J Rajasthan Acad Phy Sci 8(3):371-384.
Verma VS (2010) A planar model for mucus transport in human respiratory tract: Effect of air-flow, porosity and and mucus viscoelasticity. J Nat Acad Math 24:53-60.
Verma VS, Tripathee SM (2011) A study on mucus flow in human lung airways. JPS 2(1):113-120.
Verma VS (2012) Mucus flow in lung airways: A planar two layer steady state mathematical model. JTS India 6(1):69-77. DOI: https://doi.org/10.56424/jts.v6i01.10459
Verma VS, Tripathee SM (2013) A planar model for mucociliary transport in the human lung: Effects of mucus viscoelasticity, cilia beating and porosity. IJMRS’s International J Mathemat Model Phy Sci 1(1):19-25.
Kumar, A and Arya, H. (2023). Phytochemical screening and larvicidal evaluation of leaf extract of Tinospora cordifolia against third instar larvae of Aedes aegypti (Diptera: Culicidae). International Journal of Entomology Research. 8(4): 11-19.
Downloads
Published
Issue
Section
License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.