ROLE OF MICROTUBULES MOTORS TRANSDUCTION OF PIGMENT GRANULES IN FISH SPECIES OF PUNTIUS
DOI:
https://doi.org/10.59436/jsiane.234.2583-2093Keywords:
Microtubule motors, dynein, kinesin, dispersion, aggregation, colchicine, melanophores, Fish.Abstract
Microtubule motors (MTs) or actin-dependent motors of the myosin family move organelles along microtubules or actin filaments in intracellular transport. When pigment granules move out of the cell center, the animal becomes more pigmented because melanophors are dispersed. On the other hand, when they gather in the cell center, the animal looks less pigmented. Isolated scales were first equilibrated in physiological saline, then immersed in colchicine at concentrations ranging from 10-6 to 10-4 M, and then treated with epinephrine in order to study the function of microtubule motors (kinesin and dynein). The fact that colchicine (104M) successfully prevented the epinephrine-induced aggregation of melanosomes in melanophores on scale preparation suggested that microtubules play a function in the intracellular transport of melanosomes. To further support the idea that microtubules play a role in the intracellular transport of melanosomes, the medication colchicine (10-4M) successfully inhibited the epinephrine-induced aggregation of melanophores on scale preparation.
References
Byers, H.R, Yaar, M., Eller, M.S., Jalbert, N.L and Gilchrest, B.A. (2000). Role of cytoplasmic dynein in melanosome transport in human melanocytes. J Invest Dermatol 114:990 –997.
Bikle, D., Tilney, L.G. and Porter, K.R.(1966) Microtubules and pigment migration in the melanophores of Fundulus heteroclitus. Protoplasm, 61: 322-345.
Burakov, A; Vorabjeb, I; Semerova, I; Cowan, A; Curson, J; Wu, Y. and Rodinov, V(2021) Persistant growth of microtubules at law density. Mol.Biol.Cell. 1(32): 435-445.
Caviston, J.P and Holzbaur, E.L (2006) Microtubular motor at the intersection of traffcling and transport. Trend Cell Biol. 116, 530-537.
Clark TG, Rosenbaum JL. 1982. Melanosomes particle translocation in detergent treated melanophores of Fundulus heteroclitus. Proc Natl Acad Sci USA 79:4655– 4659.
Fingerman, M. (1963) the control of chromatophores. Pergamon press. Oxford.
Fujii, R. (1971) The physiology of fish melanophores. In: Biology of normal and abnormal melanocytes. (Eds., Kawamura T., Fitz Patrick T.B. and Seiji N). University of Tokyo Press. 31-46.
Fujii, R. and Novales, R. R. (1969) Cellular aspect of the control of physiological color change in fishes. Am. Zool. 9: 453–463
Green, L (1968) Mechanism of movements of granules in melanocytes of Fundulus heteroclitus. Proc. Natl. Acad. Sci. U.S. 59: 1179-1186.
Hasegawa, S; Sagawa, T and Hayashi, K (2019) Investigation of multiple-dynein transport of melanosomes by non-invasive force measurement using fluctuation unit χ. Scientific Reports, 9: 5099.
Hogben, L. and Slome, D. (1931) The pigmentary system. VI. The dual character of the endocrine coordination in amphibian colour change. Proc. Roy. Soc. B108: 10–53.
Holleran, E.A., Karki, S and Holzbaur, E.L.F. (1998). The role of the dynactin complex in intracellular motility. Int Rev Cytol 182:69 –109.
Kelleher, J.F. and Titus, M.A. (1998) Intracellular motility: how can we all work together.Curr. Biol. 8:R394-R397.
Koonce, M.P., Kohler, J., Neujahr, R, Schwartz, J.M., Tikhonenko I. and Gerisch G. (1999). Dynein motor regulation stabilizes interphase microtubule arrays and determines centrosome position.EMBO J 18:6786 – 6792.
Lane, J and Allen, V (1998) Microtubular based membrane protein. Biochemica Biophysica Acta 1376, 27-55.
Matthews, S. (1931) Observations on pigment migration within the fish melanophore. J. Exp. Zool. 58: 471-486.
Murphy, D.B. and Tilney, L.G. (1974) The role of microtubules in the movement of pigment granules in teleost melanophores. J. Cell. Biol. 61: 757-779.
Nilsson H, Wallin M. 1998. Microtubule aster formations by dynein- dependent organelle transport. Cell Motil Cytoskeleton 41:254 – 263.
Nilsson, H., Steffen, W. and Palazzo RE. 2001. In vitro reconstitution of fish melanophore melanosomes aggregation. Cell Motil Cytoskeleton 48:1–10.
Obika, M. (1975) The changes in cell shape during pigment migration in melanophores of a teleost, Oryzias latipes. J. Exp. Zool. 191: 427-432.
Obika, M. (1986) Intracellular transport of pigment granules in fish chromatophores, Zool. Sci. 3: 1-11.
Obika, M. and Mayer-Rochow, V.B. (1986) Ultra structure of microtubules in dermal melanophores and spinal nerve of the Antarctic teleost Pagothenia borchgrevinki. Cell Tissue Res. 244: 339-343 Obika, M., LO SJ., Tchen, T.T., and Tayler, J.D (1978) Ultrastructural demonstration of hormone induced movement of carotenoid droplets and endoplasmic reticulam in xanthophores of the goldfish,
Carassius auratus. L. Cell Tissue Res. 190: 409-416
Patil, S. and Jain, A.K (1996) Effect of colchicine and nocadozole on adrenaline induced melanosome aggregation within Labeo melanophores. Nat. Acad. Sci. Letters. 19(7-8):162-166.
Reese, E.L and Haimo, L.T. (2000). Dynein, dynactin, and kinesin II's inter- action with microtubules is regulated during bidirectional organelle transport. J Cell Biol 151:155–166.
Rodionov, V, Kashina, J. YI. A; Oladipo, A; Gross, S.P (2003) Switching between microtubule and actin-based transport system in melanophores is controlled by cAMP levels. Curr. Biol. 13: 18371847.
Rodionov, V.I., Hope, A.J., Svitkina, T.M. and Borisy, G.G. (1998) Functional coordination of microtubule-based and actin-based motility in melanophores. Curr. Biol. 8: 165-168.
Schliwa, M. and Bereiter-Hann J. (1973) Pigment movements in fish melanophores: morphological and physiological studies. II. Cell shape and microtubules. Z. Zellforsch 147: 107-125.
Schroer T.A., Steuer E.R and Sheetz M.P.(1989). Cytoplasmic dynein is a minus enddirected motor for membranous organelles. Cell 56:937– 946.
Unqueria, L.C., Raker, E. and porter, K.R. (1974) Studies on pigment migration in the melanophores of the teleost Fundulus heteroclitus (L.). Arch. Hist. Jap. 36: 339-366.
Vale, RD (2003) The molecular motor toolbox for intracellular transport, Cell, 112, 467-480.
Vallee R.B and Gee M.A.(1998). Make room for dynein. Trends Cell Biol 8:490-494. Vancoillie, G., Lambert, J., Mulder, A., Koerten, H.K., Mommaas, A.M., van Oostveldt P. and Naeyaert, J.M. (2000b). Kinesin and kinectin can associ- ate with the melanosomal surface and form a link with microtu- bules in normal human melanocytes. J Invest Dermatol 114:421– 429.
Vorobjev, I., Malikov, V. and Rodionov, V. 2001. Self-organization of radial microtubule array by dynein-dependent nucleation of microtubules. Proc Natl Acad Sci USA 98:10160 –10165.
Walte, MA (2004) Bidirection transport along microtubule. Curr. Biol. 14 R525-R537.
Wikswo. M.A. and Novales, R.R. (1969) The effect of colchicines on migration of pigment granules in the melanophores of Fundulus heteroclitus. Biol. Bull. 137: 228-237.
Wittman, T and Waterman-Storer CM (2001) Special regulation of CLASP affinity for microtubule by
Rac1 and 45 K3beta in migration epithelial cell. J. Cell Biol. 169, 929-93
Yadav, R and Jain, AK (2017) Effect of colchicine (mechanochemical response) on the melanophores of teleost fish: Rasbora elanga. International J. Zool. Studies. 2(4); 04-09.
Downloads
Published
Issue
Section
License
Copyright (c) 2023 Maharaj Singh Educational Research Development Society

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.