A REVIEW ON THE RECEPTORS AND PATHWAYS USED BY THE DENGUE VIRUS TO INFECT HOST CELLS
DOI:
https://doi.org/10.59436/jsiane.com/archives3/3/96Keywords:
non-structural proteins, structural proteins, Dengue virus, entry routes, receptors.Abstract
Dengue fever is caused by a virus that belongs to the Flaviviridae family. Around 400 million individuals worldwide contract the mosquito-borne disease dengue each year, which has a 20% fatality rate in patients who have the most severe cases. People may contract many acute DENV infections during their lifetimes because there are four DENV serotypes, each of which has some immunologic cross-reactivity. A vaccine that is active against all four DENV serotypes has not yet been created. Studies on the virus's receptors and transmission pathways identified putative host targets crucial for virus internalization and propagation in host cells. In this review article, we'll cover information about potential receptors and attachment sites in mammalian and mosquito cells. We'll also go through the many entry points and mechanisms that enable the viral genome to reach the cytoplasm and lead to the internalization of the virus.
References
Acosta, E.G., Castilla, V. and Damonte, E.B. (2009). Alternative infectious entry pathways for dengue virus serotypes into mammalian cells. Cell Microbiol., 11: 1533–49. DOI: https://doi.org/10.1111/j.1462-5822.2009.01345.x
Acosta, E.G., Castilla, V. and Damonte, E.B. (2012). Differential requirements in endocytic trafficking for penetration of dengue virus. PLoS One, 7:e44835. DOI: https://doi.org/10.1371/journal.pone.0044835
Acosta, E.G., Castilla, V., Damonte, E.B. (2008). Functional entry of dengue virus into Aedes albopictus mosquito cells is dependent on clathrin-mediated endocytosis. J Gen Virol., 89: 474–84. DOI: https://doi.org/10.1099/vir.0.83357-0
Acosta, E.G., Castilla, V. and Damonte, E.B. (2011). Infectious dengue-1 virus entry into mosquito C6/36 cells. Virus Res.,160:173–9. DOI: https://doi.org/10.1016/j.virusres.2011.06.008
Acosta, E.G., Piccini, L.E., Talarico, L.B. et al. (2014). Changes in antiviral susceptibility to entry inhibitors and endocytic uptake of dengue-2 virus serially passaged in Vero or C6/36 cells. Virus Res., 184: 39–43. DOI: https://doi.org/10.1016/j.virusres.2014.02.011
Alhoot, M.A., Wang, S.M. and Sekaran, S.D. (2012). RNA interference-mediated inhibition of dengue virus multiplication and entry in HepG2 cells. PLoS One, 7:e34060. DOI: https://doi.org/10.1371/journal.pone.0034060
Anez, G., Men, R., Eckels, K.H. et al. (2009). Passage of dengue virus type 4 vaccine candidates in fetal rhesus lung cells selects heparin sensitive variants that result in loss of infectivity and immunogenicity in rhesus macaques. J Virol., 83: 10384–94. DOI: https://doi.org/10.1128/JVI.01083-09
Ang, F., Wong, A.P., Ng, M.M. et al. (2010). Small interference RNA profiling reveals the essential role of human membrane trafficking genes in mediating the infectious entry of dengue virus. Virol J., 7: 24. DOI: https://doi.org/10.1186/1743-422X-7-24
Aoki, C., Hidari, K.I. and Itonori, S. et al. (2006). Identification and characterization of carbohydrate molecules in mammalian cells recognized by dengue virus type 2. J Biochem., 139: 607–14. DOI: https://doi.org/10.1093/jb/mvj067
Apte-Sengupta, S., Sirohi, D. and Kuhn, R.J. (2014). Coupling of replication and assembly in flaviviruses. Curr. Opin. Virol., 9: 134–142. DOI: https://doi.org/10.1016/j.coviro.2014.09.020
Artpradit, C., Robinson, L.N., Gavrilov, B.K. et al. (2013). Recognition of heparan sulfate by clinical strains of dengue virus serotype 1 using recombinant subviral particles. Virus Res., 176: 69–77. DOI: https://doi.org/10.1016/j.virusres.2013.04.017
Bäck, A.T. and Lundkvist, A. (2013). Dengue viruses - an overview. Infect. Ecol. Epidemiol., 3: 19839. DOI: https://doi.org/10.3402/iee.v3i0.19839
Bhatt, S., Gething, P.W., Brady, O.J., Messina, J.P., Farlow, A.W., Moyes, C.L. et al. (2013). The global distribution and burden of dengue. Nature. 496(7446): 504–507. DOI: https://doi.org/10.1038/nature12060
Bryant, J.E., Calvert, A.E., Mesesan, K. et al. (2007). Glycosylation of the dengue 2 virus E protein at N67 is critical for virus growth in vitro but not for growth in intrathoracically inoculated Aedes aegypti mosquitoes. Virology, 366: 415–23. DOI: https://doi.org/10.1016/j.virol.2007.05.007
Cao-Lormeau, V.M. (2009). Dengue viruses binding proteins from Aedes aegypti and Aedes polynesiensis salivary glands. Virol J., 6: 35. DOI: https://doi.org/10.1186/1743-422X-6-35
Che, P., Tang, H. and Li, Q. (2013). The interaction between claudin-1 and dengue viral prM/M protein for its entry. Virology, 446: 303–13. DOI: https://doi.org/10.1016/j.virol.2013.08.009
Chen, Y., Maguire, T., Hileman, R.E. et al. (1997). Dengue virus infectivity depends on envelope protein binding to target cell heparan sulfate. Nat Med., 3: 866–71. DOI: https://doi.org/10.1038/nm0897-866
Chen, Y.C., Wang, S.Y. and King, C.C. (1999). Bacterial lipopolysaccharide inhibits dengue virus infection of primary human monocytes/macrophages by blockade of virus entry via a CD14-dependent mechanism. J Virol., 73: 2650–7. DOI: https://doi.org/10.1128/JVI.73.4.2650-2657.1999
Chin, J.F., Chu, J.J., Ng, M.L. (2007). The envelope glycoprotein domain III of dengue virus serotypes 1 and 2 inhibit virus entry. Microbes Infect., 9: 1–6. DOI: https://doi.org/10.1016/j.micinf.2006.09.009
Crill, W.D. and Roehrig, J.T. (2001). Monoclonal antibodies that bind to domain III of dengue virus E glycoprotein are the most efficient blockers of virus adsorption to Vero cells. J Virol 75: 7769–73. DOI: https://doi.org/10.1128/JVI.75.16.7769-7773.2001
Da Poian, A.T., Carneiro, F.A., Stauffer, F. (2005). Viral membrane fusion: is glycoprotein G of rhabdoviruses a representative of a new class of viral fusion proteins? Braz J Med Biol Res., 38: 813–23. DOI: https://doi.org/10.1590/S0100-879X2005000600002
Daecke, J., Fackler, O.T., Dittmar, M.T. et al. (2005). Involvement of clathrinmediated endocytosis in human immunodeficiency virus type 1 entry. J Virol., 79: 1581–94. DOI: https://doi.org/10.1128/JVI.79.3.1581-1594.2005
Dejnirattisai, W., Webb, A.I., Chan, V. et al. (2011). Lectin switching during dengue virus infection. J Infect Dis., 203: 1775–83. DOI: https://doi.org/10.1093/infdis/jir173
Duan, X., Lu, X., Li, J. et al. (2008). Novel binding between pre-membrane protein and vacuolar ATPase is required for efficient dengue virus secretion. Biochem Bioph Res Co., 373: 319–24. DOI: https://doi.org/10.1016/j.bbrc.2008.06.041
Fibriansah, G., Ng, T.S., Kostyuchenko, V.A. et al. (2013). Structural changes in dengue virus when exposed to a temperature of 37 degrees C. J Virol., 87: 7585–92. DOI: https://doi.org/10.1128/JVI.00757-13
Fibriansah, G., Tan, J.L., Smith, S.A. et al. (2014). A potent anti-dengue human antibody preferentially recognizes the conformation of E protein monomers assembled on the virus surface. EMBO Mol Med., 6: 358–71. DOI: https://doi.org/10.1002/emmm.201303404
Freire, J.M., Veiga, A.S., Conceicao, T.M. et al. (2013b). Intracellular nucleic acid delivery by the supercharged dengue virus capsid protein. PLoS One, 8: e81450. DOI: https://doi.org/10.1371/journal.pone.0081450
Freire, J.M., Veiga, A.S., de la Torre, B.G. et al. (2013a). Peptides as models for the structure and function of viral capsid proteins: Insights on dengue virus capsid. Biopolymers, 100:325–36. DOI: https://doi.org/10.1002/bip.22266
Freire, J.M., Veiga, A.S., Rego de Figueiredo, I. et al. (2014). Nucleic acid delivery by cell penetrating peptides derived from dengue virus capsid protein: design and mechanism of action. FEBS J., 281: 191–215. DOI: https://doi.org/10.1111/febs.12587
Gao, F., Duan, X., Lu, X. et al. (2010). Novel binding between pre-membrane protein and claudin-1 is required for efficient dengue virus entry. Biochem Bioph Res Co., 391:952–7. DOI: https://doi.org/10.1016/j.bbrc.2009.11.172
Germi, R., Crance, J.M., Garin, D. et al. (2002). Heparan sulfate-mediated binding of infectious dengue virus type 2 and yellow fever virus. Virology, 292: 162–8. DOI: https://doi.org/10.1006/viro.2001.1232
Grove, J., Marsh, M. (2011). The cell biology of receptor-mediated virus entry. J Cell Biol., 195: 1071–82. DOI: https://doi.org/10.1083/jcb.201108131
Gubler, D.J. (2006). Dengue/dengue haemorrhagic fever: history and current status. Novartis Fdn Symp, 277: 3–16. DOI: https://doi.org/10.1002/0470058005.ch2
Hacker, K., White, L., de Silva, A.M. (2009). N-linked glycans on dengue viruses grown in mammalian and insect cells. J Gen Virol., 90: 2097–106. DOI: https://doi.org/10.1099/vir.0.012120-0
Harris, H.J., Davis, C., Mullins, J.G. et al. (2010). Claudin association with CD81 defines hepatitis C virus entry. J Biol Chem., 285: 21092–102. DOI: https://doi.org/10.1074/jbc.M110.104836
Harrison, S.C. (2008). Viral membrane fusion. Nat Struct Mol Biol., 15: 690–8. DOI: https://doi.org/10.1038/nsmb.1456
Hawley, W.A., Reiter, P., Copeland, R.S., Pumpuni, C.B. and Craig, G.B. (1987). Aedes albopictus in North America: probable introduction in used tires from northern Asia. Science. 236(4805): 1114–1116 DOI: https://doi.org/10.1126/science.3576225
Hidari, K.I. and Suzuki, T. (2011). Dengue virus receptor. Trop Med Health., 39: 37–43. DOI: https://doi.org/10.2149/tmh.2011-S03
Higa, L.M., Curi, B.M., Aguiar, R.S. et al. (2014). Modulation of alpha-enolase post-translational modifications by dengue virus: increased secretion of the basic isoforms in infected hepatic cells. PLoS One, 9:e88314. DOI: https://doi.org/10.1371/journal.pone.0088314
Holmas, E.C. (1998). Molecular epidemiology and evolution of emerging infectious diseases. Br Med Bull., 54(3): 533–543 DOI: https://doi.org/10.1093/oxfordjournals.bmb.a011708
Hubner, W., McNerney, G.P., Chen, P. et al. (2009). Quantitative 3D video microscopy of HIV transfer across T cell virological synapses. Science, 323: 1743–7. DOI: https://doi.org/10.1126/science.1167525
Hung, J.J., Hsieh, M.T., Young, M.J. et al. (2004). An external loop region of domain III of dengue virus type 2 envelope protein is involved in serotype-specific binding to mosquito but not mammalian cells. J Virol., 78: 378–88. DOI: https://doi.org/10.1128/JVI.78.1.378-388.2004
Hussain, T., Jamal, M., Rehman, T. and Andleeb, S. (2015). Dengue: pathogenesis, prevention and treatment – a mini review. Adv Life Sci., 2(3): 110–114.
Jemielity, S., Wang, J.J., Chan, Y.K. et al. (2013). TIM-family proteins promote infection of multiple enveloped viruses through virionassociated phosphatidylserine. PLoS Pathog., 9: e1003232. DOI: https://doi.org/10.1371/journal.ppat.1003232
Jindadamrongwech, S., Smith, D.R. (2004). Virus Overlay Protein Binding Assay (VOPBA) reveals serotype specific heterogeneity of dengue virus binding proteins on HepG2 human liver cells. Intervirology, 47: 370–3. DOI: https://doi.org/10.1159/000080882
Jindadamrongwech, S., Thepparit, C. and Smith, D.R. (2004). Identification of GRP 78 (BiP) as a liver cell expressed receptor element for dengue virus serotype 2. Arch Virol, 149: 915–27. DOI: https://doi.org/10.1007/s00705-003-0263-x
Johnson, A.J., Guirakhoo, F. and Roehrig, J.T. (1994). The envelope glycoproteins of dengue 1 and dengue 2 viruses grown in mosquito cells differ in their utilization of potential glycosylation sites. Virology, 203: 241–9. DOI: https://doi.org/10.1006/viro.1994.1481
Junjhon, J., Edwards, T.J., Utaipat, U. et al. (2010). Influence of pr-M cleavage on the heterogeneity of extracellular dengue virus particles. J Virol, 84: 8353–8. DOI: https://doi.org/10.1128/JVI.00696-10
Klein, D.E., Choi, J.L. and Harrison, S.C. (2013). Structure of a dengue virus envelope protein late-stage fusion intermediate. J Virol, 87: 2287–93. DOI: https://doi.org/10.1128/JVI.02957-12
Kobayashi, T., Beuchat, M.H. and Chevallier, J. et al. (2002). Separation and characterization of late endosomal membrane domains. J Biol Chem, 277: 32157–64. DOI: https://doi.org/10.1074/jbc.M202838200
Krishnan, M.N., Sukumaran, B., Pal, U. et al. (2007). Rab 5 is required for the cellular entry of dengue and West Nile viruses. J Virol, 81: 4881–5. DOI: https://doi.org/10.1128/JVI.02210-06
Kuadkitkan, A., Wikan, N. and Fongsaran, C. et al. (2010). Identification and characterization of prohibitin as a receptor protein mediating DENV-2 entry into insect cells. Virology, 406: 149–61. DOI: https://doi.org/10.1016/j.virol.2010.07.015
Kumar, A., Arya, H., Singh, A. P., Singh, S., Sharma, S., & Singh, K. (2023). Surveillance of Aedes Diversity, Seasonal Prevalence and Habitat Characterization in Bulandshahr, Utter Pradesh, India. Journal of Science Innovations and Nature of Earth, 3(1): 04-10. DOI: https://doi.org/10.59436/https://jsiane.com/archives3/1/62
Lee, E., Wright, P.J., Davidson, A. et al. (2008). Virulence attenuation of Dengue virus due to augmented glycosaminoglycan-binding affinity and restriction in extraneural dissemination. J Gen Virol., 87: 2791–801. DOI: https://doi.org/10.1099/vir.0.82164-0
Li, L., Lok, S.M., Yu, I.M. et al. (2008). The flavivirus precursor membraneenvelope protein complex: structure and maturation. Science, 319: 1830–4. DOI: https://doi.org/10.1126/science.1153263
Liu, S., Yang, W., Shen, L. et al. (2009). Tight junction proteins claudin-1 and occludin control hepatitis C virus entry and are downregulated during infection to prevent superinfection. J Virol., 83: 2011–4. DOI: https://doi.org/10.1128/JVI.01888-08
Luo, D., Vasudevan, S.G. and Lescar, J. (2015). The flavivirus NS2B-NS3 protease-helicase as a target for antiviral drug development. Antiviral Res. 118: 148–158. DOI: https://doi.org/10.1016/j.antiviral.2015.03.014
Marovich, M., Grouard-Vogel, G., Louder, M. et al. (2001). Human dendritic cells as targets of dengue virus infection. J Invest Derm Symp, 6: 219–24. DOI: https://doi.org/10.1046/j.0022-202x.2001.00037.x
Martinez-Barragan, J.J., del Angel, R.M. (2001). Identification of a putative coreceptor on Vero cells that participates in dengue 4 virus infection. J Virol., 75: 7818–27. DOI: https://doi.org/10.1128/JVI.75.17.7818-7827.2001
McNaughton, B.R., Cronican, J.J., Thompson, D.B. et al. (2009). Mammalian cell penetration, siRNA transfection, and DNA transfection by supercharged proteins. P Natl Acad Sci USA, 106: 6111–6. DOI: https://doi.org/10.1073/pnas.0807883106
Meertens, L., Bertaux, C., Cukierman, L. et al. (2008). The tight junction proteins claudin-1, -6, and -9 are entry cofactors for hepatitis C virus. J Virol, 82: 3555–60. DOI: https://doi.org/10.1128/JVI.01977-07
Meertens, L., Carnec, X., Lecoin, M.P. et al. (2012). The TIM and TAM families of phosphatidylserine receptors mediate dengue virus entry. Cell Host Microbe, 12: 544–57. DOI: https://doi.org/10.1016/j.chom.2012.08.009
Melikyan, G.B. (2014). HIV entry: a game of hide-and-fuse? Curr Opin Virol, 4: 1–7. DOI: https://doi.org/10.1016/j.coviro.2013.09.004
Mercado-Curiel, R.F., Black, W.Ct., Munoz, Mde L. (2008). A dengue receptor as possible genetic marker of vector competence in Aedes aegypti. BMC Microbiol, 8: 118. DOI: https://doi.org/10.1186/1471-2180-8-118
Mercado-Curiel, R.F., Esquinca-Aviles, H.A., Tovar, R. et al. (2006). The four serotypes of dengue recognize the same putative receptors in Aedes aegypti midgut and Ae. albopictus cells. BMC Microbiol, 6: 85. DOI: https://doi.org/10.1186/1471-2180-6-85
Mercer, J., Helenius, A. (2008). Vaccinia virus uses macropinocytosis and apoptotic mimicry to enter host cells. Science, 320: 531–5. DOI: https://doi.org/10.1126/science.1155164
Miller, J.L., de Wet, B.J., Martinez-Pomares, L. et al. (2008). The mannose receptor mediates dengue virus infection of macrophages. PLoS Pathog, 4: e17. DOI: https://doi.org/10.1371/journal.ppat.0040017
Miyauchi, K., Kim, Y., Latinovic, O. et al. (2009). HIV enters cells via endocytosis and dynamin-dependent fusion with endosomes. Cell, 137: 433–44. DOI: https://doi.org/10.1016/j.cell.2009.02.046
Modis, Y., Ogata, S., Clements, D. et al. (2003). A ligand-binding pocket in the dengue virus envelope glycoprotein. P Natl Acad Sci USA,100: 6986–91. DOI: https://doi.org/10.1073/pnas.0832193100
Modis, Y., Ogata, S., Clements, D. et al. (2004). Structure of the dengue virus envelope protein after membrane fusion. Nature, 427: 313–9. DOI: https://doi.org/10.1038/nature02165
Modis, Y., Ogata, S., Clements, D. et al. (2005). Variable surface epitopes in the crystal structure of dengue virus type 3 envelope glycoprotein. J Virol., 79: 1223–31. DOI: https://doi.org/10.1128/JVI.79.2.1223-1231.2005
Modis, Y. (2014). Relating structure to evolution in class II viral membrane fusion proteins. Curr Opin Virol., 5: 34–41. DOI: https://doi.org/10.1016/j.coviro.2014.01.009
Mondotte, J.A., Lozach, P.Y., Amara, A. et al. (2007). Essential role of dengue virus envelope protein N glycosylation at asparagine-67 during viral propagation. J Virol, 81: 7136–48. DOI: https://doi.org/10.1128/JVI.00116-07
Mosso, C., Galvan-Mendoza, I.J., Ludert, J.E. et al. (2008). Endocytic pathway followed by dengue virus to infect the mosquito cell line C6/36 HT. Virology, 378: 193–9. DOI: https://doi.org/10.1016/j.virol.2008.05.012
Mukhopadhyay, S., Kuhn, R.J., Rossmann, M.G. (2005). A structural perspective of the flavivirus life cycle. Nat Rev Microbiol., 3: 13–22. DOI: https://doi.org/10.1038/nrmicro1067
Munoz Mde, L., Limon-Camacho, G., Tovar, R. et al. (2013). Proteomic identification of dengue virus binding proteins in Aedes aegypti mosquitoes and Aedes albopictus cells. Biomed Res Int., 2013: 875958. DOI: https://doi.org/10.1155/2013/875958
Munoz, M.L., Cisneros, A., Cruz, J. et al. (1998). Putative dengue virus receptors from mosquito cells. FEMS Microbiol Lett., 168: 251–8. DOI: https://doi.org/10.1111/j.1574-6968.1998.tb13281.x
Mustafa, M.S., Rasotgi, V., Jain, S. and Gupta, V. (2015). Discovery of fifth serotype of dengue virus (DENV-5): a new public health dilemma in dengue control. Med J Armed Forces India, 71(1): 67–70. DOI: https://doi.org/10.1016/j.mjafi.2014.09.011
Mutheneni, S.R., Morse, A.P., Caminade, C. and Upadhyayula, S.M. (2017). Dengue burden in India: recent trends and importance of climatic parameters. Emerg Microbes Infect, 6(8): e70 DOI: https://doi.org/10.1038/emi.2017.57
Navarro-Sanchez, E., Altmeyer, R., Amara, A. et al. (2003). Dendritic-cellspecific ICAM3-grabbing non-integrin is essential for the productive infection of human dendritic cells by mosquito-cellderived dengue viruses. EMBO Rep., 4: 723–8. DOI: https://doi.org/10.1038/sj.embor.embor866
Ng, W.C., Soto-Acosta, R., Bradrick, S.S., Garcia-Blanco, M.A. and Ooi, E.E. (2017). The 5' and 3' untranslated regions of the flaviviral genome. Viruses 9(6): 137. DOI: https://doi.org/10.3390/v9060137
Nour, A.M., Li, Y., Wolenski, J. et al. (2013). Viral membrane fusion and nucleocapsid delivery into the cytoplasm are distinct events in some flaviviruses. PLoS Pathog,, 9: e1003585. DOI: https://doi.org/10.1371/journal.ppat.1003585
Obi, J.O., Gutié rrez-Barbosa, H., Chua, J.V. and Deredge, D.J. (2021). Current trends and limitations in dengue antiviral research. Trop. Med. Infect. Dis., 6(4): 180. DOI: https://doi.org/10.3390/tropicalmed6040180
Padilla-Parra, S., Marin, M., Gahlaut, N. et al. (2013). Fusion of mature HIV-1 particles leads to complete release of a gag-GFPbased content marker and raises the intraviral pH. PLoS One, 8: e71002. DOI: https://doi.org/10.1371/journal.pone.0071002
Perera, R., Kuhn, R.J. (2014). Structural proteomics of dengue virus. Curr Opin Microbiol., 11: 369–77. DOI: https://doi.org/10.1016/j.mib.2008.06.004
Perera-Lecoin, M., Meertens, L., Carnec, X. et al. (2014). Flavivirus entry receptors: an update. Viruses, 6: 69–88. DOI: https://doi.org/10.3390/v6010069
Pierson, T.C., Kielian, M. (2013). Flaviviruses: braking the entering. Curr Opin Virol, 3:3–12. DOI: https://doi.org/10.1016/j.coviro.2012.12.001
Pokidysheva, E., Zhang, Y., Battisti, A.J. et al. (2006). Cryo-EM reconstruction of dengue virus in complex with the carbohydrate recognition domain of DC-SIGN. Cell, 2006; 124: 485–93. DOI: https://doi.org/10.1016/j.cell.2005.11.042
Prestwood, T.R., Prigozhin, D.M., Sharar, K.L. et al. (2008). A mouse-passaged dengue virus strain with reduced affinity for heparan sulfate causes severe disease in mice by establishing increased systemic viral loads. J Virol 82: 8411–21. DOI: https://doi.org/10.1128/JVI.00611-08
Ramos-Castaneda, J., Imbert, J.L., Barron, B.L. et al. (1997). A 65-kDa trypsinsensible membrane cell protein as a possible receptor for dengue virus in cultured neuroblastoma cells. J Neurovirol., 3: 435–40. DOI: https://doi.org/10.3109/13550289709031189
Reyes-del, Valle J., Chavez-Salinas, S., Medina, F. et al. (2005). Heat shock protein 90 and heat shock protein 70 are components of dengue virus receptor complex in human cells. J Virol, 79: 4557–67. DOI: https://doi.org/10.1128/JVI.79.8.4557-4567.2005
Reyes-del Valle, J., del Angel, R.M. (2004). Isolation of putative dengue virus receptor molecules by affinity chromatography using a recombinant E protein ligand. J Virol Methods., 116: 95–102. DOI: https://doi.org/10.1016/j.jviromet.2003.10.014
Rodenhuis-Zybert, I.A., van der Schaar, H.M., da Silva Voorham, J.M. et al. (2010). Immature dengue virus: a veiled pathogen? PLoS Pathog, 6: e1000718.
Rodenhuis-Zybert, I.A., Wilschut, J., Smit, J.M. (2010). Dengue virus life cycle: viral and host factors modulating infectivity. Cell Mol Life Sci., 67: 2773–86. DOI: https://doi.org/10.1007/s00018-010-0357-z
Rodenhuis-Zybert, I.A., Wilschut, J., Smit, J.M. (2011). Partial maturation: an immune-evasion strategy of dengue virus? Trends Microbiol, 19: 248–54. DOI: https://doi.org/10.1016/j.tim.2011.02.002
Rodenhuis-Zybert, I.A., van der Schaar, H.M., da Silva Voorham, J.M., van der Ende-Metselaar, H., Lei, H.Y., Wilschut, J. et al. (2010). Immature dengue virus: a veiled pathogen? PloS Pathog. 6(1): e1000718. DOI: https://doi.org/10.1371/journal.ppat.1000718
Sakoonwatanyoo, P., Boonsanay, V., Smith, D.R. (2006). Growth and production of the dengue virus in C6/36 cells and identification of a laminin-binding protein as a candidate serotype 3 and 4 receptor protein. Intervirology, 49: 161–72. DOI: https://doi.org/10.1159/000089377
Sakuntabhai, A., Turbpaiboon, C., Casademont, I. et al. (2005). A variant in the CD209 promoter is associated with severity of dengue disease. Nat Genet., 37: 507–13. DOI: https://doi.org/10.1038/ng1550
Salas-Benito, J.S., delAngel, R.M. (1997). Identification of two surface proteins from C6/36 cells that bind dengue type 4 virus. J Virol 1997;71:7246–52. DOI: https://doi.org/10.1128/jvi.71.10.7246-7252.1997
Shapiro J, Sciaky N, Lee J, et al. Localization of endogenous furin in cultured cell lines. J Histochem Cytochem 1997;45:3–12. DOI: https://doi.org/10.1177/002215549704500102
Smit JM, Moesker B, Rodenhuis-Zybert I, et al. Flavivirus cell entry and membrane fusion. Viruses 2011;3:160–71. DOI: https://doi.org/10.3390/v3020160
Suksanpaisan L, Susantad T, Smith DR. Characterization of dengue virus entry into HepG2 cells. J Biomed Sci 2009; 16:17. DOI: https://doi.org/10.1186/1423-0127-16-17
Suomalainen M, Greber UF. Uncoating of non-enveloped viruses. Curr Opin Virol 2013;3:27–33. DOI: https://doi.org/10.1016/j.coviro.2012.12.004
Tassaneetrithep B, Burgess TH, Granelli-Piperno A, et al. DC-SIGN (CD209) mediates dengue virus infection of human dendritic cells. J Exp Med 2003;197:823–9. DOI: https://doi.org/10.1084/jem.20021840
Thepparit C, Phoolcharoen W, Suksanpaisan L, et al. Internalization and propagation of the dengue virus in human hepatoma (HepG2) cells. Intervirology 2004;47:78–86. DOI: https://doi.org/10.1159/000077830
Thepparit C, Smith DR. Serotype-specific entry of dengue virus into liver cells: identification of the 37-kilodalton/67- kilodalton high-affinity laminin receptor as a dengue virus serotype 1 receptor. J Virol 2004;78:12647–56. DOI: https://doi.org/10.1128/JVI.78.22.12647-12656.2004
Thompson DB, Cronican JJ, Liu DR. Engineering and identifying supercharged proteins for macromolecule delivery into mammalian cells. Methods Enzymol 2012;503: 293–319. DOI: https://doi.org/10.1016/B978-0-12-396962-0.00012-4
Upanan S, Kuadkitkan A, Smith DR. Identification of dengue virus binding proteins using affinity chromatography. J Virol Methods 2008;151:325–8. DOI: https://doi.org/10.1016/j.jviromet.2008.05.001
Usme-Ciro JA, Campillo-Pedroza N, Almazan F, et al. Cytoplasmic RNA viruses as potential vehicles for the delivery of therapeutic small RNAs. Virol J 2013;10:185. DOI: https://doi.org/10.1186/1743-422X-10-185
van der Schaar HM, Rust MJ, Chen C, et al. Dissecting the cell entry pathway of dengue virus by single-particle tracking in living cells. PLoS Pathog, 4: e1000244. DOI: https://doi.org/10.1371/journal.ppat.1000244
van der Schaar, H.M., Rust, M.J., Waarts, B.L. et al. (2007). Characterization of the early events in dengue virus cell entry by biochemical assays and single-virus tracking. J Virol., 81: 12019–28. DOI: https://doi.org/10.1128/JVI.00300-07
van Meer, G., Voelker, D.R., Feigenson, G.W. (2008). Membrane lipids: where they are and how they behave. Nat Rev Mol Cell Biol., 9: 112–24. DOI: https://doi.org/10.1038/nrm2330
Vancini, R., Kramer, L.D., Ribeiro, M. et al. (2013). Flavivirus infection from mosquitoes in vitro reveals cell entry at the plasma membrane. Virology, 435: 406–14. DOI: https://doi.org/10.1016/j.virol.2012.10.013
Watterson, D., Kobe, B., Young, P.R. (2012). Residues in domain III of the dengue virus envelope glycoprotein involved in cell-surface glycosaminoglycan binding. J Gen Virol., 93: 72–82. DOI: https://doi.org/10.1099/vir.0.037317-0
Wei, H.Y., Jiang, L.F., Fang, D.Y. et al. (2003). Dengue virus type 2 infects human endothelial cells through binding of the viral envelope glycoprotein to cell surface polypeptides. J Gen Virol., 84: 3095–8. DOI: https://doi.org/10.1099/vir.0.19308-0
Whitehead, S.S., Blaney, J.E., Durbin, A.P. and Murphy, B.R. (2007). Prospects for a dengue virus vaccine. Nat. Rev. Microbiol. 5(7): 518–528. DOI: https://doi.org/10.1038/nrmicro1690
Wichit, S., Jittmittraphap, A., Hidari, K.I. et al. (2011). Dengue virus type 2 recognizes the carbohydrate moiety of neutral glycosphingolipids in mammalian and mosquito cells. Microbiol Immunol, 55: 135–40. DOI: https://doi.org/10.1111/j.1348-0421.2010.00293.x
Wu, S.J., Grouard-Vogel, G., Sun, W. et al. (2000). Human skin Langerhans cells are targets of dengue virus infection. Nat Med., 6: 816–20. DOI: https://doi.org/10.1038/77553
Yazi Mendoza, M., Salas-Benito, J.S., Lanz-Mendoza, H. et al. (2002). A putative receptor for dengue virus in mosquito tissues: localization of a 45-kDa glycoprotein. Am J Trop Med Hyg., 67: 76–84. DOI: https://doi.org/10.4269/ajtmh.2002.67.76
Zaitseva, E., Yang, S.T., Melikov, K. et al. (2010). Dengue virus ensures its fusion in late endosomes using compartment-specific lipids. PLoS Pathog, 6:e1001131. DOI: https://doi.org/10.1371/journal.ppat.1001131
Zhang, X., Ge, P., Yu, X. et al. (2013a). Cryo-EM structure of the mature dengue virus at 3.5-A resolution. Nat Struct Mol Biol., 20: 105–10. DOI: https://doi.org/10.1038/nsmb.2463
Zhang, Y., Zhang, W., Ogata, S. et al. (2004). Conformational changes of the flavivirus E glycoprotein. Structure, 12: 1607–18. DOI: https://doi.org/10.1016/j.str.2004.06.019
Zheng, A., Umashankar, M., Kielian, M. (2010). In vitro and in vivo studies identify important features of dengue virus pr-E protein interactions. PLoS Pathog, 6: e1001157. DOI: https://doi.org/10.1371/journal.ppat.1001157
Zhong, P., Agosto, L.M., Munro, J.B. et al. (2013). Cell-to-cell transmission of viruses. Curr Opin Virol, 3: 44–50. DOI: https://doi.org/10.1016/j.coviro.2012.11.004
Zou, G., Chen, Y.L., Dong, H., Lim, C.C., Yap, L.J., Yau, Y.H. et al. (2011). Functional analysis of two cavities in flavivirus NS5 polymerase. J. Biol. Chem. 286(16): 14362–14372. DOI: https://doi.org/10.1074/jbc.M110.214189
Zybert, I.A., van der Ende-Metselaar, H., Wilschut, J. et al. (2008). Functional importance of dengue virus maturation: infectious properties of immature virions. J Gen Virol., 89: 3047–51. DOI: https://doi.org/10.1099/vir.0.2008/002535-0
Downloads
Published
Issue
Section
License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.